IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39503-4.html
   My bibliography  Save this article

The experimental demonstration of a topological current divider

Author

Listed:
  • Francesco Romeo

    (Università di Salerno
    INFN, Sez. di Napoli, Gruppo Collegato di Salerno)

  • Antonio Di Bartolomeo

    (Università di Salerno)

Abstract

Topological electronics is an emerging field aiming at exploiting the topological properties of matter in devices with extended functionalities. Recent experiments demonstrate a topological current divider, a key circuit element for this emerging technology.

Suggested Citation

  • Francesco Romeo & Antonio Di Bartolomeo, 2023. "The experimental demonstration of a topological current divider," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39503-4
    DOI: 10.1038/s41467-023-39503-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39503-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39503-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi-Fan Zhao & Ruoxi Zhang & Jiaqi Cai & Deyi Zhuo & Ling-Jie Zhou & Zi-Jie Yan & Moses H. W. Chan & Xiaodong Xu & Cui-Zu Chang, 2023. "Creation of chiral interface channels for quantized transport in magnetic topological insulator multilayer heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Nicodemos Varnava & Justin H. Wilson & J. H. Pixley & David Vanderbilt, 2021. "Controllable quantum point junction on the surface of an antiferromagnetic topological insulator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Abdulhakim Bake & Qi Zhang & Cong Son Ho & Grace L. Causer & Weiyao Zhao & Zengji Yue & Alexander Nguyen & Golrokh Akhgar & Julie Karel & David Mitchell & Zeljko Pastuovic & Roger Lewis & Jared H. Col, 2023. "Top-down patterning of topological surface and edge states using a focused ion beam," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Dmitry Ovchinnikov & Jiaqi Cai & Zhong Lin & Zaiyao Fei & Zhaoyu Liu & Yong-Tao Cui & David H. Cobden & Jiun-Haw Chu & Cui-Zu Chang & Di Xiao & Jiaqiang Yan & Xiaodong Xu, 2022. "Topological current divider in a Chern insulator junction," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Ovchinnikov & Jiaqi Cai & Zhong Lin & Zaiyao Fei & Zhaoyu Liu & Yong-Tao Cui & David H. Cobden & Jiun-Haw Chu & Cui-Zu Chang & Di Xiao & Jiaqiang Yan & Xiaodong Xu, 2022. "Topological current divider in a Chern insulator junction," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. A. Honma & D. Takane & S. Souma & K. Yamauchi & Y. Wang & K. Nakayama & K. Sugawara & M. Kitamura & K. Horiba & H. Kumigashira & K. Tanaka & T. K. Kim & C. Cacho & T. Oguchi & T. Takahashi & Yoichi An, 2023. "Antiferromagnetic topological insulator with selectively gapped Dirac cones," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Xiaoyan Zhou & Hongtao Wang & Shuxi Liu & Hao Wang & John You En Chan & Cheng-Feng Pan & Daomu Zhao & Joel K. W. Yang & Cheng-Wei Qiu, 2024. "Arbitrary engineering of spatial caustics with 3D-printed metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Yi-Fan Zhao & Ruoxi Zhang & Jiaqi Cai & Deyi Zhuo & Ling-Jie Zhou & Zi-Jie Yan & Moses H. W. Chan & Xiaodong Xu & Cui-Zu Chang, 2023. "Creation of chiral interface channels for quantized transport in magnetic topological insulator multilayer heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39503-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.