IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v576y2019i7787d10.1038_s41586-019-1840-9.html
   My bibliography  Save this article

Prediction and observation of an antiferromagnetic topological insulator

Author

Listed:
  • M. M. Otrokov

    (Centro Mixto CSIC-UPV/EHU
    Basque Foundation for Science
    Donostia International Physics Center (DIPC)
    Saint Petersburg State University)

  • I. I. Klimovskikh

    (Saint Petersburg State University)

  • H. Bentmann

    (Universität Würzburg)

  • D. Estyunin

    (Saint Petersburg State University)

  • A. Zeugner

    (Technische Universität Dresden)

  • Z. S. Aliev

    (Azerbaijan National Academy of Sciences
    Azerbaijan State Oil and Industry University)

  • S. Gaß

    (Institute for Solid State Research, Leibniz IFW Dresden)

  • A. U. B. Wolter

    (Institute for Solid State Research, Leibniz IFW Dresden)

  • A. V. Koroleva

    (Saint Petersburg State University)

  • A. M. Shikin

    (Saint Petersburg State University)

  • M. Blanco-Rey

    (Donostia International Physics Center (DIPC)
    Departamento de Física de Materiales UPV/EHU)

  • M. Hoffmann

    (Johannes Kepler Universität)

  • I. P. Rusinov

    (Saint Petersburg State University
    Tomsk State University)

  • A. Yu. Vyazovskaya

    (Saint Petersburg State University
    Tomsk State University)

  • S. V. Eremeev

    (Saint Petersburg State University
    Tomsk State University
    Russian Academy of Sciences)

  • Yu. M. Koroteev

    (Tomsk State University
    Russian Academy of Sciences)

  • V. M. Kuznetsov

    (Tomsk State University)

  • F. Freyse

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

  • J. Sánchez-Barriga

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

  • I. R. Amiraslanov

    (Azerbaijan National Academy of Sciences)

  • M. B. Babanly

    (Azerbaijan National Academy of Science)

  • N. T. Mamedov

    (Azerbaijan National Academy of Sciences)

  • N. A. Abdullayev

    (Azerbaijan National Academy of Sciences)

  • V. N. Zverev

    (Russian Academy of Sciences)

  • A. Alfonsov

    (Institute for Solid State Research, Leibniz IFW Dresden)

  • V. Kataev

    (Institute for Solid State Research, Leibniz IFW Dresden)

  • B. Büchner

    (Institute for Solid State Research, Leibniz IFW Dresden
    Technische Universität Dresden)

  • E. F. Schwier

    (Hiroshima University)

  • S. Kumar

    (Hiroshima University)

  • A. Kimura

    (Hiroshima University)

  • L. Petaccia

    (Elettra Sincrotrone Trieste)

  • G. Santo

    (Elettra Sincrotrone Trieste)

  • R. C. Vidal

    (Universität Würzburg)

  • S. Schatz

    (Universität Würzburg)

  • K. Kißner

    (Universität Würzburg)

  • M. Ünzelmann

    (Universität Würzburg)

  • C. H. Min

    (Universität Würzburg)

  • Simon Moser

    (Lawrence Berkeley National Laboratory)

  • T. R. F. Peixoto

    (Universität Würzburg)

  • F. Reinert

    (Universität Würzburg)

  • A. Ernst

    (Johannes Kepler Universität
    Max-Planck-Institut für Mikrostrukturphysik)

  • P. M. Echenique

    (Centro Mixto CSIC-UPV/EHU
    Donostia International Physics Center (DIPC)
    Departamento de Física de Materiales UPV/EHU)

  • A. Isaeva

    (Institute for Solid State Research, Leibniz IFW Dresden
    Technische Universität Dresden)

  • E. V. Chulkov

    (Centro Mixto CSIC-UPV/EHU
    Donostia International Physics Center (DIPC)
    Saint Petersburg State University
    Departamento de Física de Materiales UPV/EHU)

Abstract

Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering that MnBi2Te4 shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6–8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.

Suggested Citation

  • M. M. Otrokov & I. I. Klimovskikh & H. Bentmann & D. Estyunin & A. Zeugner & Z. S. Aliev & S. Gaß & A. U. B. Wolter & A. V. Koroleva & A. M. Shikin & M. Blanco-Rey & M. Hoffmann & I. P. Rusinov & A. Y, 2019. "Prediction and observation of an antiferromagnetic topological insulator," Nature, Nature, vol. 576(7787), pages 416-422, December.
  • Handle: RePEc:nat:nature:v:576:y:2019:i:7787:d:10.1038_s41586-019-1840-9
    DOI: 10.1038/s41586-019-1840-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1840-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1840-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaqi Cai & Dmitry Ovchinnikov & Zaiyao Fei & Minhao He & Tiancheng Song & Zhong Lin & Chong Wang & David Cobden & Jiun-Haw Chu & Yong-Tao Cui & Cui-Zu Chang & Di Xiao & Jiaqiang Yan & Xiaodong Xu, 2022. "Electric control of a canted-antiferromagnetic Chern insulator," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Fengrui Yao & Volodymyr Multian & Zhe Wang & Nicolas Ubrig & Jérémie Teyssier & Fan Wu & Enrico Giannini & Marco Gibertini & Ignacio Gutiérrez-Lezama & Alberto F. Morpurgo, 2023. "Multiple antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr3 multilayers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Shuai Li & Ming Gong & Yu-Hang Li & Hua Jiang & X. C. Xie, 2024. "High spin axion insulator," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Dmitry Ovchinnikov & Jiaqi Cai & Zhong Lin & Zaiyao Fei & Zhaoyu Liu & Yong-Tao Cui & David H. Cobden & Jiun-Haw Chu & Cui-Zu Chang & Di Xiao & Jiaqiang Yan & Xiaodong Xu, 2022. "Topological current divider in a Chern insulator junction," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. A. Honma & D. Takane & S. Souma & K. Yamauchi & Y. Wang & K. Nakayama & K. Sugawara & M. Kitamura & K. Horiba & H. Kumigashira & K. Tanaka & T. K. Kim & C. Cacho & T. Oguchi & T. Takahashi & Yoichi An, 2023. "Antiferromagnetic topological insulator with selectively gapped Dirac cones," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Junyeong Ahn & Su-Yang Xu & Ashvin Vishwanath, 2022. "Theory of optical axion electrodynamics and application to the Kerr effect in topological antiferromagnets," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Heda Zhang & Jahyun Koo & Chunqiang Xu & Milos Sretenovic & Binghai Yan & Xianglin Ke, 2022. "Exchange-biased topological transverse thermoelectric effects in a Kagome ferrimagnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Weiyan Lin & Yang Feng & Yongchao Wang & Jinjiang Zhu & Zichen Lian & Huanyu Zhang & Hao Li & Yang Wu & Chang Liu & Yihua Wang & Jinsong Zhang & Yayu Wang & Chui-Zhen Chen & Xiaodong Zhou & Jian Shen, 2022. "Direct visualization of edge state in even-layer MnBi2Te4 at zero magnetic field," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Yaoxin Li & Yongchao Wang & Zichen Lian & Hao Li & Zhiting Gao & Liangcai Xu & Huan Wang & Rui’e Lu & Longfei Li & Yang Feng & Jinjiang Zhu & Liangyang Liu & Yongqian Wang & Bohan Fu & Shuai Yang & Lu, 2024. "Fabrication-induced even-odd discrepancy of magnetotransport in few-layer MnBi2Te4," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Hari Padmanabhan & Maxwell Poore & Peter K. Kim & Nathan Z. Koocher & Vladimir A. Stoica & Danilo Puggioni & Huaiyu Wang & Xiaozhe Shen & Alexander H. Reid & Mingqiang Gu & Maxwell Wetherington & Seng, 2022. "Interlayer magnetophononic coupling in MnBi2Te4," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Haiming Deng & Lukas Zhao & Kyungwha Park & Jiaqiang Yan & Kamil Sobczak & Ayesha Lakra & Entela Buzi & Lia Krusin-Elbaum, 2022. "Topological surface currents accessed through reversible hydrogenation of the three-dimensional bulk," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Su Kong Chong & Chao Lei & Seng Huat Lee & Jan Jaroszynski & Zhiqiang Mao & Allan H. MacDonald & Kang L. Wang, 2023. "Anomalous Landau quantization in intrinsic magnetic topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Su Kong Chong & Yang Cheng & Huiyuan Man & Seng Huat Lee & Yu Wang & Bingqian Dai & Masaki Tanabe & Ting-Hsun Yang & Zhiqiang Mao & Kathryn A. Moler & Kang L. Wang, 2024. "Intrinsic exchange biased anomalous Hall effect in an uncompensated antiferromagnet MnBi2Te4," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. David Lujan & Jeongheon Choe & Martin Rodriguez-Vega & Zhipeng Ye & Aritz Leonardo & T. Nathan Nunley & Liang-Juan Chang & Shang-Fan Lee & Jiaqiang Yan & Gregory A. Fiete & Rui He & Xiaoqin Li, 2022. "Magnons and magnetic fluctuations in atomically thin MnBi2Te4," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Abdulhakim Bake & Qi Zhang & Cong Son Ho & Grace L. Causer & Weiyao Zhao & Zengji Yue & Alexander Nguyen & Golrokh Akhgar & Julie Karel & David Mitchell & Zeljko Pastuovic & Roger Lewis & Jared H. Col, 2023. "Top-down patterning of topological surface and edge states using a focused ion beam," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:576:y:2019:i:7787:d:10.1038_s41586-019-1840-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.