IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42148-y.html
   My bibliography  Save this article

Universal machine learning for the response of atomistic systems to external fields

Author

Listed:
  • Yaolong Zhang

    (University of Science and Technology of China
    École Polytechnique Fédérale de Lausanne)

  • Bin Jiang

    (University of Science and Technology of China
    University of Science and Technology of China)

Abstract

Machine learned interatomic interaction potentials have enabled efficient and accurate molecular simulations of closed systems. However, external fields, which can greatly change the chemical structure and/or reactivity, have been seldom included in current machine learning models. This work proposes a universal field-induced recursively embedded atom neural network (FIREANN) model, which integrates a pseudo field vector-dependent feature into atomic descriptors to represent system-field interactions with rigorous rotational equivariance. This “all-in-one” approach correlates various response properties like dipole moment and polarizability with the field-dependent potential energy in a single model, very suitable for spectroscopic and dynamics simulations in molecular and periodic systems in the presence of electric fields. Especially for periodic systems, we find that FIREANN can overcome the intrinsic multiple-value issue of the polarization by training atomic forces only. These results validate the universality and capability of the FIREANN method for efficient first-principles modeling of complicated systems in strong external fields.

Suggested Citation

  • Yaolong Zhang & Bin Jiang, 2023. "Universal machine learning for the response of atomistic systems to external fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42148-y
    DOI: 10.1038/s41467-023-42148-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42148-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42148-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon Batzner & Albert Musaelian & Lixin Sun & Mario Geiger & Jonathan P. Mailoa & Mordechai Kornbluth & Nicola Molinari & Tess E. Smidt & Boris Kozinsky, 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Ang Gao & Richard C. Remsing, 2022. "Self-consistent determination of long-range electrostatics in neural network potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Huziel E. Sauceda & Luis E. Gálvez-González & Stefan Chmiela & Lauro Oliver Paz-Borbón & Klaus-Robert Müller & Alexandre Tkatchenko, 2022. "BIGDML—Towards accurate quantum machine learning force fields for materials," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Cassone & Fausto Martelli, 2024. "Electrofreezing of liquid water at ambient conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adil Kabylda & Valentin Vassilev-Galindo & Stefan Chmiela & Igor Poltavsky & Alexandre Tkatchenko, 2023. "Efficient interatomic descriptors for accurate machine learning force fields of extended molecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Li Zheng & Konstantinos Karapiperis & Siddhant Kumar & Dennis M. Kochmann, 2023. "Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Wei Lu & Jixian Zhang & Weifeng Huang & Ziqiao Zhang & Xiangyu Jia & Zhenyu Wang & Leilei Shi & Chengtao Li & Peter G. Wolynes & Shuangjia Zheng, 2024. "DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Xiaoxun Gong & He Li & Nianlong Zou & Runzhang Xu & Wenhui Duan & Yong Xu, 2023. "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Yusong Wang & Tong Wang & Shaoning Li & Xinheng He & Mingyu Li & Zun Wang & Nanning Zheng & Bin Shao & Tie-Yan Liu, 2024. "Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Rama Oktavian & Ruben Goeminne & Lawson T. Glasby & Ping Song & Racheal Huynh & Omid Taheri Qazvini & Omid Ghaffari-Nik & Nima Masoumifard & Joan L. Cordiner & Pierre Hovington & Veronique Speybroeck , 2024. "Gas adsorption and framework flexibility of CALF-20 explored via experiments and simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Lucien F. Krapp & Luciano A. Abriata & Fabio Cortés Rodriguez & Matteo Dal Peraro, 2023. "PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Chao Liang & Yilimiranmu Rouzhahong & Caiyuan Ye & Chong Li & Biao Wang & Huashan Li, 2023. "Material symmetry recognition and property prediction accomplished by crystal capsule representation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Albert Musaelian & Simon Batzner & Anders Johansson & Lixin Sun & Cameron J. Owen & Mordechai Kornbluth & Boris Kozinsky, 2023. "Learning local equivariant representations for large-scale atomistic dynamics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Mingfeng Liu & Jiantao Wang & Junwei Hu & Peitao Liu & Haiyang Niu & Xuexi Yan & Jiangxu Li & Haile Yan & Bo Yang & Yan Sun & Chunlin Chen & Georg Kresse & Liang Zuo & Xing-Qiu Chen, 2024. "Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Charlotte Loh & Thomas Christensen & Rumen Dangovski & Samuel Kim & Marin Soljačić, 2022. "Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. T. M. Linker & A. Krishnamoorthy & L. L. Daemen & A. J. Ramirez-Cuesta & K. Nomura & A. Nakano & Y. Q. Cheng & W. R. Hicks & A. I. Kolesnikov & P. D. Vashishta, 2024. "Neutron scattering and neural-network quantum molecular dynamics investigation of the vibrations of ammonia along the solid-to-liquid transition," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42148-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.