IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42264-9.html
   My bibliography  Save this article

Photoelectrochemical oxidative C(sp3)−H borylation of unactivated hydrocarbons

Author

Listed:
  • Ping-Fu Zhong

    (Harbin Institute of Technology (Shenzhen))

  • Jia-Lin Tu

    (Harbin Institute of Technology (Shenzhen))

  • Yating Zhao

    (Quzhou University)

  • Nan Zhong

    (Harbin Institute of Technology (Shenzhen))

  • Chao Yang

    (Harbin Institute of Technology (Shenzhen))

  • Lin Guo

    (Harbin Institute of Technology (Shenzhen))

  • Wujiong Xia

    (Harbin Institute of Technology (Shenzhen)
    Henan Normal University)

Abstract

Organoboron compounds are of high significance in organic synthesis due to the unique versatility of boryl substituents to access further modifications. The high demand for the incorporation of boryl moieties into molecular structures has witnessed significant progress, particularly in the C(sp3)−H borylation of hydrocarbons. Taking advantage of special characteristics of photo/electrochemistry, we herein describe the development of an oxidative C(sp3)−H borylation reaction under metal- and oxidant-free conditions, enabled by photoelectrochemical strategy. The reaction exhibits broad substrate scope (>57 examples), and includes the use of simple alkanes, halides, silanes, ketones, esters and nitriles as viable substrates. Notably, unconventional regioselectivity of C(sp3)−H borylation is achieved, with the coupling site of C(sp3)−H borylation selectively located in the distal methyl group. Our method is operationally simple and easily scalable, and offers a feasible approach for the one-step synthesis of high-value organoboron building blocks from simple hydrocarbons, which would provide ample opportunities for drug discovery.

Suggested Citation

  • Ping-Fu Zhong & Jia-Lin Tu & Yating Zhao & Nan Zhong & Chao Yang & Lin Guo & Wujiong Xia, 2023. "Photoelectrochemical oxidative C(sp3)−H borylation of unactivated hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42264-9
    DOI: 10.1038/s41467-023-42264-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42264-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42264-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian B. Perry & Thomas F. Brewer & Patrick J. Sarver & Danielle M. Schultz & Daniel A. DiRocco & David W. C. MacMillan, 2018. "Direct arylation of strong aliphatic C–H bonds," Nature, Nature, vol. 560(7716), pages 70-75, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long Huang & Marcin Szewczyk & Rajesh Kancherla & Bholanath Maity & Chen Zhu & Luigi Cavallo & Magnus Rueping, 2023. "Modulating stereoselectivity in allylic C(sp3)-H bond arylations via nickel and photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yujun Li & Shaopeng Guo & Qing-Han Li & Ke Zheng, 2023. "Metal-free photoinduced C(sp3)–H/C(sp3)–H cross-coupling to access α‑tertiary amino acid derivatives," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Zhenghui Wen & Diego Pintossi & Manuel Nuño & Timothy Noël, 2022. "Membrane-based TBADT recovery as a strategy to increase the sustainability of continuous-flow photocatalytic HAT transformations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Yue Wang & Suping Zhang & Ke Zeng & Pengli Zhang & Xiaorong Song & Tie-Gen Chen & Guoqin Xia, 2024. "Deoxygenative radical cross-coupling of C(sp3)−O/C(sp3)−H bonds promoted by hydrogen-bond interaction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42264-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.