IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27165-z.html
   My bibliography  Save this article

A general strategy for C(sp3)–H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor

Author

Listed:
  • Isabelle Nathalie-Marie Leibler

    (Princeton University)

  • Makeda A. Tekle-Smith

    (Princeton University
    University of Los Angeles)

  • Abigail G. Doyle

    (Princeton University
    University of Los Angeles)

Abstract

Photoredox catalysis has provided many approaches to C(sp3)–H functionalization that enable selective oxidation and C(sp3)–C bond formation via the intermediacy of a carbon-centered radical. While highly enabling, functionalization of the carbon-centered radical is largely mediated by electrophilic reagents. Notably, nucleophilic reagents represent an abundant and practical reagent class, motivating the interest in developing a general C(sp3)–H functionalization strategy with nucleophiles. Here we describe a strategy that transforms C(sp3)–H bonds into carbocations via sequential hydrogen atom transfer (HAT) and oxidative radical-polar crossover. The resulting carbocation is functionalized by a variety of nucleophiles—including halides, water, alcohols, thiols, an electron-rich arene, and an azide—to effect diverse bond formations. Mechanistic studies indicate that HAT is mediated by methyl radical—a previously unexplored HAT agent with differing polarity to many of those used in photoredox catalysis—enabling new site-selectivity for late-stage C(sp3)–H functionalization.

Suggested Citation

  • Isabelle Nathalie-Marie Leibler & Makeda A. Tekle-Smith & Abigail G. Doyle, 2021. "A general strategy for C(sp3)–H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27165-z
    DOI: 10.1038/s41467-021-27165-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27165-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27165-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changha Kim & Yuhyun Kim & Sungwoo Hong, 2024. "1,3-Difunctionalization of [1.1.1]propellane through iron-hydride catalyzed hydropyridylation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yujun Li & Shaopeng Guo & Qing-Han Li & Ke Zheng, 2023. "Metal-free photoinduced C(sp3)–H/C(sp3)–H cross-coupling to access α‑tertiary amino acid derivatives," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27165-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.