IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41929-9.html
   My bibliography  Save this article

Charge injection engineering at organic/inorganic heterointerfaces for high-efficiency and fast-response perovskite light-emitting diodes

Author

Listed:
  • Zhenchao Li

    (South China University of Technology
    State Key Laboratory of Advanced Materials and Electronic Components, Guangdong Fenghua Advanced Technology Holding Co. Ltd.)

  • Ziming Chen

    (South China University of Technology
    Imperial College London)

  • Zhangsheng Shi

    (City University of Hong Kong)

  • Guangruixing Zou

    (City University of Hong Kong)

  • Linghao Chu

    (South China University of Technology)

  • Xian-Kai Chen

    (City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong
    Soochow University)

  • Chujun Zhang

    (Hong Kong Baptist University)

  • Shu Kong So

    (Hong Kong Baptist University)

  • Hin-Lap Yip

    (South China University of Technology
    City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong)

Abstract

The development of advanced perovskite emitters has considerably improved the performance of perovskite light-emitting diodes (LEDs). However, the further development of perovskite LEDs requires ideal device electrical properties, which strongly depend on its interfaces. In perovskite LEDs with conventional p-i-n structures, hole injection is generally less efficient than electron injection, causing charge imbalance. Furthermore, the popular hole injection structure of NiOx/poly(9-vinylcarbazole) suffers from several issues, such as weak interfacial adhesion, high interfacial trap density and mismatched energy levels. In this work, we insert a self-assembled monolayer of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid between the NiOx and poly(9-vinylcarbazole) layers to overcome these challenges at the organic/inorganic heterointerfaces by establishing a robust interface, passivating interfacial trap states and aligning the energy levels. We successfully demonstrate blue (emission at 493 nm) and green (emission at 515 nm) devices with external quantum efficiencies of 14.5% and 26.0%, respectively. More importantly, the self-assembled monolayer also gives rise to devices with much faster response speeds by reducing interfacial capacitance and resistance. Our results pave the way for developing more efficient and brighter perovskite LEDs with quick response, widening their potential application scope.

Suggested Citation

  • Zhenchao Li & Ziming Chen & Zhangsheng Shi & Guangruixing Zou & Linghao Chu & Xian-Kai Chen & Chujun Zhang & Shu Kong So & Hin-Lap Yip, 2023. "Charge injection engineering at organic/inorganic heterointerfaces for high-efficiency and fast-response perovskite light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41929-9
    DOI: 10.1038/s41467-023-41929-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41929-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41929-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Changjiu Sun & Yuanzhi Jiang & Minghuan Cui & Lu Qiao & Junli Wei & Yanmin Huang & Li Zhang & Tingwei He & Saisai Li & Hsien-Yi Hsu & Chaochao Qin & Run Long & Mingjian Yuan, 2021. "High-performance large-area quasi-2D perovskite light-emitting diodes," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Zhenchao Li & Ziming Chen & Yongchao Yang & Qifan Xue & Hin-Lap Yip & Yong Cao, 2019. "Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Yuanzhi Jiang & Minghuan Cui & Saisai Li & Changjiu Sun & Yanmin Huang & Junli Wei & Li Zhang & Mei Lv & Chaochao Qin & Yufang Liu & Mingjian Yuan, 2021. "Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Kang Wang & Zih-Yu Lin & Zihan Zhang & Linrui Jin & Ke Ma & Aidan H. Coffey & Harindi R. Atapattu & Yao Gao & Jee Yung Park & Zitang Wei & Blake P. Finkenauer & Chenhui Zhu & Xiangeng Meng & Sarah N. , 2023. "Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Qi Wang & Xiaoming Wang & Zhi Yang & Ninghao Zhou & Yehao Deng & Jingjing Zhao & Xun Xiao & Peter Rudd & Andrew Moran & Yanfa Yan & Jinsong Huang, 2019. "Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    6. Zema Chu & Yang Zhao & Fei Ma & Cai-Xin Zhang & Huixiong Deng & Feng Gao & Qiufeng Ye & Junhua Meng & Zhigang Yin & Xingwang Zhang & Jingbi You, 2020. "Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    7. Yuanzhi Jiang & Changjiu Sun & Jian Xu & Saisai Li & Minghuan Cui & Xinliang Fu & Yuan Liu & Yaqi Liu & Haoyue Wan & Keyu Wei & Tong Zhou & Wei Zhang & Yingguo Yang & Jien Yang & Chaochao Qin & Shuyan, 2022. "Synthesis-on-substrate of quantum dot solids," Nature, Nature, vol. 612(7941), pages 679-684, December.
    8. Dongxin Ma & Kebin Lin & Yitong Dong & Hitarth Choubisa & Andrew H. Proppe & Dan Wu & Ya-Kun Wang & Bin Chen & Peicheng Li & James Z. Fan & Fanglong Yuan & Andrew Johnston & Yuan Liu & Yuetong Kang & , 2021. "Distribution control enables efficient reduced-dimensional perovskite LEDs," Nature, Nature, vol. 599(7886), pages 594-598, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Bryan Cao & Daquan Zhang & Qianpeng Zhang & Xiao Qiu & Yu Zhou & Swapnadeep Poddar & Yu Fu & Yudong Zhu & Jin-Feng Liao & Lei Shu & Beitao Ren & Yucheng Ding & Bing Han & Zhubing He & Dai-Bin Kua, 2023. "High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Kang Wang & Zih-Yu Lin & Zihan Zhang & Linrui Jin & Ke Ma & Aidan H. Coffey & Harindi R. Atapattu & Yao Gao & Jee Yung Park & Zitang Wei & Blake P. Finkenauer & Chenhui Zhu & Xiangeng Meng & Sarah N. , 2023. "Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Guangyi Shi & Zongming Huang & Ran Qiao & Wenjing Chen & Zhijian Li & Yaping Li & Kai Mu & Ting Si & Zhengguo Xiao, 2024. "Manipulating solvent fluidic dynamics for large-area perovskite film-formation and white light-emitting diodes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Tian Tian & Meifang Yang & Yuxuan Fang & Shuo Zhang & Yuxin Chen & Lianzhou Wang & Wu-Qiang Wu, 2023. "Large-area waterproof and durable perovskite luminescent textiles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Longbo Yang & Hainan Du & Jinghui Li & Yiqi Luo & Xia Lin & Jincong Pang & Yuxuan Liu & Liang Gao & Siwei He & Jae-Wook Kang & Wenxi Liang & Haisheng Song & Jiajun Luo & Jiang Tang, 2024. "Efficient deep-blue electroluminescence from Ce-based metal halide," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Bin Xu & Yawen Li & Peibin Hong & Peijie Zhang & Jiang Han & Zewen Xiao & Zewei Quan, 2024. "Pressure-controlled free exciton and self-trapped exciton emission in quasi-one-dimensional hybrid lead bromides," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Songhao Guo & Willa Mihalyi-Koch & Yuhong Mao & Xinyu Li & Kejun Bu & Huilong Hong & Matthew P. Hautzinger & Hui Luo & Dong Wang & Jiazhen Gu & Yifan Zhang & Dongzhou Zhang & Qingyang Hu & Yang Ding &, 2024. "Exciton engineering of 2D Ruddlesden–Popper perovskites by synergistically tuning the intra and interlayer structures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Jong Hyun Park & Chung Hyeon Jang & Eui Dae Jung & Seungjin Lee & Myoung Hoon Song & Bo Ram Lee, 2020. "A-Site Cation Engineering for Efficient Blue-Emissive Perovskite Light-Emitting Diodes," Energies, MDPI, vol. 13(24), pages 1-8, December.
    9. Yongjie Liu & Chen Tao & Yu Cao & Liangyan Chen & Shuxin Wang & Pei Li & Cheng Wang & Chenwei Liu & Feihong Ye & Shengyong Hu & Meng Xiao & Zheng Gao & Pengbing Gui & Fang Yao & Kailian Dong & Jiashua, 2022. "Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Xiaopeng Feng & Chenglong Li & Jinmei Song & Yuhong He & Wei Qu & Weijun Li & Keke Guo & Lulu Liu & Bai Yang & Haotong Wei, 2024. "Differential perovskite hemispherical photodetector for intelligent imaging and location tracking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41929-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.