IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50508-5.html
   My bibliography  Save this article

Efficient deep-blue electroluminescence from Ce-based metal halide

Author

Listed:
  • Longbo Yang

    (Huazhong University of Science and Technology (HUST))

  • Hainan Du

    (Huazhong University of Science and Technology (HUST))

  • Jinghui Li

    (Huazhong University of Science and Technology (HUST))

  • Yiqi Luo

    (Huazhong University of Science and Technology (HUST))

  • Xia Lin

    (Huazhong University of Science and Technology (HUST))

  • Jincong Pang

    (Huazhong University of Science and Technology (HUST))

  • Yuxuan Liu

    (Huazhong University of Science and Technology (HUST)
    Hubei Jiufengshan Laboratory)

  • Liang Gao

    (Huazhong University of Science and Technology (HUST))

  • Siwei He

    (Jeonbuk National University)

  • Jae-Wook Kang

    (Jeonbuk National University)

  • Wenxi Liang

    (Huazhong University of Science and Technology (HUST)
    Optics Valley Laboratory)

  • Haisheng Song

    (Huazhong University of Science and Technology (HUST))

  • Jiajun Luo

    (Huazhong University of Science and Technology (HUST))

  • Jiang Tang

    (Huazhong University of Science and Technology (HUST)
    Optics Valley Laboratory)

Abstract

Rare earth ions with d-f transitions (Ce3+, Eu2+) have emerged as promising candidates for electroluminescence applications due to their abundant emission spectra, high light conversion efficiency, and excellent stability. However, directly injecting charge into 4f orbitals remains a significant challenge, resulting in unsatisfied external quantum efficiency and high operating voltage in rare earth light-emitting diodes. Herein, we propose a scheme to solve the difficulty by utilizing the energy transfer process. X-ray photoelectron spectroscopy and transient absorption spectra suggest that the Cs3CeI6 luminescence process is primarily driven by the energy transfer from the I2-based self-trapped exciton to the Ce-based Frenkel exciton. Furthermore, energy transfer efficiency is largely improved by enhancing the spectra overlap between the self-trapped exciton emission and the Ce-based Frenkel exciton excitation. When implemented as an active layer in light-emitting diodes, they show the maximum brightness and external quantum efficiency of 1073 cd m−2 and 7.9%, respectively.

Suggested Citation

  • Longbo Yang & Hainan Du & Jinghui Li & Yiqi Luo & Xia Lin & Jincong Pang & Yuxuan Liu & Liang Gao & Siwei He & Jae-Wook Kang & Wenxi Liang & Haisheng Song & Jiajun Luo & Jiang Tang, 2024. "Efficient deep-blue electroluminescence from Ce-based metal halide," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50508-5
    DOI: 10.1038/s41467-024-50508-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50508-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50508-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zema Chu & Yang Zhao & Fei Ma & Cai-Xin Zhang & Huixiong Deng & Feng Gao & Qiufeng Ye & Junhua Meng & Zhigang Yin & Xingwang Zhang & Jingbi You, 2020. "Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Jiajun Luo & Xiaoming Wang & Shunran Li & Jing Liu & Yueming Guo & Guangda Niu & Li Yao & Yuhao Fu & Liang Gao & Qingshun Dong & Chunyi Zhao & Meiying Leng & Fusheng Ma & Wenxi Liang & Liduo Wang & Sh, 2018. "Efficient and stable emission of warm-white light from lead-free halide double perovskites," Nature, Nature, vol. 563(7732), pages 541-545, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Bryan Cao & Daquan Zhang & Qianpeng Zhang & Xiao Qiu & Yu Zhou & Swapnadeep Poddar & Yu Fu & Yudong Zhu & Jin-Feng Liao & Lei Shu & Beitao Ren & Yucheng Ding & Bing Han & Zhubing He & Dai-Bin Kua, 2023. "High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Robert A. Jagt & Ivona Bravić & Lissa Eyre & Krzysztof Gałkowski & Joanna Borowiec & Kavya Reddy Dudipala & Michał Baranowski & Mateusz Dyksik & Tim W. J. Goor & Theo Kreouzis & Ming Xiao & Adrian Bev, 2023. "Layered BiOI single crystals capable of detecting low dose rates of X-rays," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Rui Zhou & Laizhi Sui & Xinbao Liu & Kaikai Liu & Dengyang Guo & Wenbo Zhao & Shiyu Song & Chaofan Lv & Shu Chen & Tianci Jiang & Zhe Cheng & Sheng Meng & Chongxin Shan, 2023. "Multiphoton excited singlet/triplet mixed self-trapped exciton emission," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Yunhu Wang & Kunpeng Wang & Fangxu Dai & Kai Zhang & Haifeng Tang & Lei Wang & Jun Xing, 2022. "A warm-white light-emitting diode based on single-component emitter aromatic carbon nitride," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Zhenchao Li & Ziming Chen & Zhangsheng Shi & Guangruixing Zou & Linghao Chu & Xian-Kai Chen & Chujun Zhang & Shu Kong So & Hin-Lap Yip, 2023. "Charge injection engineering at organic/inorganic heterointerfaces for high-efficiency and fast-response perovskite light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Maurizia Palummo & Daniele Varsano & Eduardo Berríos & Koichi Yamashita & Giacomo Giorgi, 2020. "Halide Pb-Free Double–Perovskites: Ternary vs. Quaternary Stoichiometry," Energies, MDPI, vol. 13(14), pages 1-28, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50508-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.