IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41861-y.html
   My bibliography  Save this article

CSTF2 mediated mRNA N6-methyladenosine modification drives pancreatic ductal adenocarcinoma m6A subtypes

Author

Listed:
  • Yanfen Zheng

    (Sun Yat-sen University Cancer Center)

  • Xingyang Li

    (Sun Yat-sen University Cancer Center)

  • Shuang Deng

    (Sun Yat-sen University Cancer Center)

  • Hongzhe Zhao

    (Sun Yat-sen University Cancer Center)

  • Ying Ye

    (Sun Yat-sen University Cancer Center)

  • Shaoping Zhang

    (Sun Yat-sen University Cancer Center)

  • Xudong Huang

    (Sun Yat-sen University Cancer Center)

  • Ruihong Bai

    (Sun Yat-sen University Cancer Center)

  • Lisha Zhuang

    (Sun Yat-sen University Cancer Center)

  • Quanbo Zhou

    (Sun Yat-sen University)

  • Mei Li

    (Sun Yat-sen University Cancer Center)

  • Jiachun Su

    (Sun Yat-sen University Cancer Center)

  • Rui Li

    (Sun Yat-sen University Cancer Center)

  • Xiaoqiong Bao

    (Sun Yat-sen University Cancer Center)

  • Lingxing Zeng

    (Sun Yat-sen University Cancer Center)

  • Rufu Chen

    (Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences)

  • Jian Zheng

    (Sun Yat-sen University Cancer Center
    Nanjing Medical University
    Affiliated Cancer Hospital and Institute of Guangzhou Medical University)

  • Dongxin Lin

    (Sun Yat-sen University Cancer Center
    Nanjing Medical University
    National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Chuan He

    (The University of Chicago
    The University of Chicago
    The University of Chicago)

  • Jialiang Zhang

    (Sun Yat-sen University Cancer Center)

  • Zhixiang Zuo

    (Sun Yat-sen University Cancer Center)

Abstract

N6-methyladenosine (m6A) modification of gene transcripts plays critical roles in cancer. Here we report transcriptomic m6A profiling in 98 tissue samples from 65 individuals with pancreatic ductal adenocarcinoma (PDAC). We identify 17,996 m6A peaks with 195 hyper-methylated and 93 hypo-methylated in PDAC compared with adjacent normal tissues. The differential m6A modifications distinguish two PDAC subtypes with different prognosis outcomes. The formation of the two subtypes is driven by a newly identified m6A regulator CSTF2 that co-transcriptionally regulates m6A installation through slowing the RNA Pol II elongation rate during gene transcription. We find that most of the CSTF2-regulated m6As have positive effects on the RNA level of host genes, and CSTF2-regulated m6As are mainly recognized by IGF2BP2, an m6A reader that stabilizes mRNAs. These results provide a promising PDAC subtyping strategy and potential therapeutic targets for precision medicine of PDAC.

Suggested Citation

  • Yanfen Zheng & Xingyang Li & Shuang Deng & Hongzhe Zhao & Ying Ye & Shaoping Zhang & Xudong Huang & Ruihong Bai & Lisha Zhuang & Quanbo Zhou & Mei Li & Jiachun Su & Rui Li & Xiaoqiong Bao & Lingxing Z, 2023. "CSTF2 mediated mRNA N6-methyladenosine modification drives pancreatic ductal adenocarcinoma m6A subtypes," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41861-y
    DOI: 10.1038/s41467-023-41861-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41861-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41861-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jialiang Zhang & Ruihong Bai & Mei Li & Huilin Ye & Chen Wu & Chengfeng Wang & Shengping Li & Liping Tan & Dongmei Mai & Guolin Li & Ling Pan & Yanfen Zheng & Jiachun Su & Ying Ye & Zhiqiang Fu & Shan, 2019. "Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    2. Dan Dominissini & Sharon Moshitch-Moshkovitz & Schraga Schwartz & Mali Salmon-Divon & Lior Ungar & Sivan Osenberg & Karen Cesarkas & Jasmine Jacob-Hirsch & Ninette Amariglio & Martin Kupiec & Rotem So, 2012. "Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq," Nature, Nature, vol. 485(7397), pages 201-206, May.
    3. Huilin Huang & Hengyou Weng & Keren Zhou & Tong Wu & Boxuan Simen Zhao & Mingli Sun & Zhenhua Chen & Xiaolan Deng & Gang Xiao & Franziska Auer & Lars Klemm & Huizhe Wu & Zhixiang Zuo & Xi Qin & Yunzhu, 2019. "Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally," Nature, Nature, vol. 567(7748), pages 414-419, March.
    4. Peter Bailey & David K. Chang & Katia Nones & Amber L. Johns & Ann-Marie Patch & Marie-Claude Gingras & David K. Miller & Angelika N. Christ & Tim J. C. Bruxner & Michael C. Quinn & Craig Nourse & L. , 2016. "Genomic analyses identify molecular subtypes of pancreatic cancer," Nature, Nature, vol. 531(7592), pages 47-52, March.
    5. Susan McCracken & Nova Fong & Krassimir Yankulov & Scott Ballantyne & Guohua Pan & Jack Greenblatt & Scott D. Patterson & Marvin Wickens & David L. Bentley, 1997. "The C-terminal domain of RNA polymerase II couples mRNA processing to transcription," Nature, Nature, vol. 385(6614), pages 357-361, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Yang & Robinson Triboulet & Qi Liu & Erdem Sendinc & Richard I. Gregory, 2022. "Exon junction complex shapes the m6A epitranscriptome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Yuanpei Li & Xiaoniu He & Xiao Lu & Zhicheng Gong & Qing Li & Lei Zhang & Ronghui Yang & Chengyi Wu & Jialiang Huang & Jiancheng Ding & Yaohui He & Wen Liu & Ceshi Chen & Bin Cao & Dawang Zhou & Yufen, 2022. "METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    3. Zhen-Dong Zhong & Ying-Yuan Xie & Hong-Xuan Chen & Ye-Lin Lan & Xue-Hong Liu & Jing-Yun Ji & Fu Wu & Lingmei Jin & Jiekai Chen & Daniel W. Mak & Zhang Zhang & Guan-Zheng Luo, 2023. "Systematic comparison of tools used for m6A mapping from nanopore direct RNA sequencing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Ya′nan Zhu & Jing He & Jiawen Wang & Wei Guo & Hongran Liu & Zhuoran Song & Le Kang, 2024. "Parental experiences orchestrate locust egg hatching synchrony by regulating nuclear export of precursor miRNA," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Zhiyuan Luo & Jiacheng Zhang & Jingyi Fei & Shengdong Ke, 2022. "Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Fernando Rodriguez & Irina A. Yushenova & Daniel DiCorpo & Irina R. Arkhipova, 2022. "Bacterial N4-methylcytosine as an epigenetic mark in eukaryotic DNA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Bárbara Andrade Barbosa & Saskia D. Asten & Ji Won Oh & Arantza Farina-Sarasqueta & Joanne Verheij & Frederike Dijk & Hanneke W. M. Laarhoven & Bauke Ylstra & Juan J. Garcia Vallejo & Mark A. Wiel & Y, 2021. "Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Buki Kwon & Mervin M. Fansler & Neil D. Patel & Jihye Lee & Weirui Ma & Christine Mayr, 2022. "Enhancers regulate 3′ end processing activity to control expression of alternative 3′UTR isoforms," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Sakshi Jain & Lukasz Koziej & Panagiotis Poulis & Igor Kaczmarczyk & Monika Gaik & Michal Rawski & Namit Ranjan & Sebastian Glatt & Marina V. Rodnina, 2023. "Modulation of translational decoding by m6A modification of mRNA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Sebastien Martinez & Shifei Wu & Michael Geuenich & Ahmad Malik & Ramona Weber & Tristan Woo & Amy Zhang & Gun Ho Jang & Dzana Dervovic & Khalid N. Al-Zahrani & Ricky Tsai & Nassima Fodil & Philippe G, 2024. "In vivo CRISPR screens reveal SCAF1 and USP15 as drivers of pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Peter Bailey & Rachel A. Ridgway & Patrizia Cammareri & Mairi Treanor-Taylor & Ulla-Maja Bailey & Christina Schoenherr & Max Bone & Daniel Schreyer & Karin Purdie & Jason Thomson & William Rickaby & R, 2023. "Driver gene combinations dictate cutaneous squamous cell carcinoma disease continuum progression," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Guoqiang Zhang & Yongru Xu & Xiaona Wang & Yuanxiang Zhu & Liangliang Wang & Wenxin Zhang & Yiru Wang & Yajie Gao & Xuna Wu & Ying Cheng & Qinmiao Sun & Dahua Chen, 2022. "Dynamic FMR1 granule phase switch instructed by m6A modification contributes to maternal RNA decay," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Teklab Gebregiworgis & Yoshihito Kano & Jonathan St-Germain & Nikolina Radulovich & Molly L. Udaskin & Ahmet Mentes & Richard Huang & Betty P. K. Poon & Wenguang He & Ivette Valencia-Sama & Claire M. , 2021. "The Q61H mutation decouples KRAS from upstream regulation and renders cancer cells resistant to SHP2 inhibitors," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    14. Pierre Klein & Marija Petrić Howe & Jasmine Harley & Harry Crook & Sofia Esteban Serna & Theodoros I. Roumeliotis & Jyoti S. Choudhary & Anob M. Chakrabarti & Raphaëlle Luisier & Rickie Patani & Andre, 2024. "m6a methylation orchestrates IMP1 regulation of microtubules during human neuronal differentiation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Chirag Nepal & Jesper B. Andersen, 2023. "Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. James T. Topham & Erica S. Tsang & Joanna M. Karasinska & Andrew Metcalfe & Hassan Ali & Steve E. Kalloger & Veronika Csizmok & Laura M. Williamson & Emma Titmuss & Karina Nielsen & Gian Luca Negri & , 2022. "Integrative analysis of KRAS wildtype metastatic pancreatic ductal adenocarcinoma reveals mutation and expression-based similarities to cholangiocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Shigekazu Murakami & Shannon M. White & Alec T. McIntosh & Chan D. K. Nguyen & Chunling Yi, 2023. "Spontaneously evolved progenitor niches escape Yap oncogene addiction in advanced pancreatic ductal adenocarcinomas," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    18. Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. P Acera Mateos & A J Sethi & A Ravindran & A Srivastava & K Woodward & S Mahmud & M Kanchi & M Guarnacci & J Xu & Z W S Yuen & Y Zhou & A Sneddon & W Hamilton & J Gao & L M Starrs & R Hayashi & V Wick, 2024. "Prediction of m6A and m5C at single-molecule resolution reveals a transcriptome-wide co-occurrence of RNA modifications," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Gregor Werba & Daniel Weissinger & Emily A. Kawaler & Ende Zhao & Despoina Kalfakakou & Surajit Dhara & Lidong Wang & Heather B. Lim & Grace Oh & Xiaohong Jing & Nina Beri & Lauren Khanna & Tamas Gond, 2023. "Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41861-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.