IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41445-w.html
   My bibliography  Save this article

High-throughput screening of BAM inhibitors in native membrane environment

Author

Listed:
  • Parthasarathi Rath

    (University of Basel)

  • Adrian Hermann

    (Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd)

  • Ramona Schaefer

    (Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd)

  • Elia Agustoni

    (University of Basel)

  • Jean-Marie Vonach

    (Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd)

  • Martin Siegrist

    (Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd)

  • Christian Miscenic

    (Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd)

  • Andreas Tschumi

    (Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd)

  • Doris Roth

    (Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd)

  • Christoph Bieniossek

    (Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd)

  • Sebastian Hiller

    (University of Basel)

Abstract

The outer membrane insertase of Gram-negative bacteria, BAM, is a key target for urgently needed novel antibiotics. Functional reconstitutions of BAM have so far been limited to synthetic membranes and with low throughput capacity for inhibitor screening. Here, we describe a BAM functional assay in native membrane environment capable of high-throughput screening. This is achieved by employing outer membrane vesicles (OMVs) to present BAM directly in native membranes. Refolding of the model substrate OmpT by BAM was possible from the chaperones SurA and Skp, with the required SurA concentration three times higher than Skp. In the OMVs, the antibiotic darobactin had a tenfold higher potency than in synthetic membranes, highlighting the need for native conditions in antibiotics development. The assay is successfully miniaturized for 1536-well plates and upscaled using large scale fermentation, resulting in high-throughput capacities to screen large commercial compound libraries. Our OMV-based assay thus lays the basis for discovery, hit validation and lead expansion of antibiotics targeting BAM.

Suggested Citation

  • Parthasarathi Rath & Adrian Hermann & Ramona Schaefer & Elia Agustoni & Jean-Marie Vonach & Martin Siegrist & Christian Miscenic & Andreas Tschumi & Doris Roth & Christoph Bieniossek & Sebastian Hille, 2023. "High-throughput screening of BAM inhibitors in native membrane environment," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41445-w
    DOI: 10.1038/s41467-023-41445-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41445-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41445-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antonio N. Calabrese & Bob Schiffrin & Matthew Watson & Theodoros K. Karamanos & Martin Walko & Julia R. Humes & Jim E. Horne & Paul White & Andrew J. Wilson & Antreas C. Kalli & Roman Tuma & Alison E, 2020. "Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    2. Anatol Luther & Matthias Urfer & Michael Zahn & Maik Müller & Shuang-Yan Wang & Milon Mondal & Alessandra Vitale & Jean-Baptiste Hartmann & Timothy Sharpe & Fabio Lo Monte & Harsha Kocherla & Elizabet, 2019. "Author Correction: Chimeric peptidomimetic antibiotics against Gram-negative bacteria," Nature, Nature, vol. 576(7786), pages 5-5, December.
    3. Yu Imai & Kirsten J. Meyer & Akira Iinishi & Quentin Favre-Godal & Robert Green & Sylvie Manuse & Mariaelena Caboni & Miho Mori & Samantha Niles & Meghan Ghiglieri & Chandrashekhar Honrao & Xiaoyu Ma , 2019. "A new antibiotic selectively kills Gram-negative pathogens," Nature, Nature, vol. 576(7787), pages 459-464, December.
    4. Anatol Luther & Matthias Urfer & Michael Zahn & Maik Müller & Shuang-Yan Wang & Milon Mondal & Alessandra Vitale & Jean-Baptiste Hartmann & Timothy Sharpe & Fabio Lo Monte & Harsha Kocherla & Elizabet, 2019. "Chimeric peptidomimetic antibiotics against Gram-negative bacteria," Nature, Nature, vol. 576(7787), pages 452-458, December.
    5. Yinghong Gu & Huanyu Li & Haohao Dong & Yi Zeng & Zhengyu Zhang & Neil G. Paterson & Phillip J. Stansfeld & Zhongshan Wang & Yizheng Zhang & Wenjian Wang & Changjiang Dong, 2016. "Structural basis of outer membrane protein insertion by the BAM complex," Nature, Nature, vol. 531(7592), pages 64-69, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Wang & Sarah B. Nyenhuis & Harris D. Bernstein, 2024. "The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Runrun Wu & Jeremy W. Bakelar & Karl Lundquist & Zijian Zhang & Katie M. Kuo & David Ryoo & Yui Tik Pang & Chen Sun & Tommi White & Thomas Klose & Wen Jiang & James C. Gumbart & Nicholas Noinaj, 2021. "Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Christopher Jonkergouw & Ngong Kodiah Beyeh & Ekaterina Osmekhina & Katarzyna Leskinen & S. Maryamdokht Taimoory & Dmitrii Fedorov & Eduardo Anaya-Plaza & Mauri A. Kostiainen & John F. Trant & Robin H, 2023. "Repurposing host-guest chemistry to sequester virulence and eradicate biofilms in multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Dawei Sun & Kelly M. Storek & Dimitry Tegunov & Ying Yang & Christopher P. Arthur & Matthew Johnson & John G. Quinn & Weijing Liu & Guanghui Han & Hany S. Girgis & Mary Kate Alexander & Austin K. Murc, 2024. "The discovery and structural basis of two distinct state-dependent inhibitors of BamA," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Bob Schiffrin & Joel A. Crossley & Martin Walko & Jonathan M. Machin & G. Nasir Khan & Iain W. Manfield & Andrew J. Wilson & David J. Brockwell & Tomas Fessl & Antonio N. Calabrese & Sheena E. Radford, 2024. "Dual client binding sites in the ATP-independent chaperone SurA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Christopher J. Barden & Fan Wu & J. Pedro Fernandez-Murray & Erhu Lu & Shengguo Sun & Marcia M. Taylor & Annette L. Rushton & Jason Williams & Mahtab Tavasoli & Autumn Meek & Alla Siva Reddy & Lisa M., 2024. "Computer-aided drug design to generate a unique antibiotic family," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Katherine L. Fenn & Jim E. Horne & Joel A. Crossley & Nils Böhringer & Romany J. Horne & Till F. Schäberle & Antonio N. Calabrese & Sheena E. Radford & Neil A. Ranson, 2024. "Outer membrane protein assembly mediated by BAM-SurA complexes," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Xu Wang & Sarah B. Nyenhuis & Harris D. Bernstein, 2024. "The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Mathieu Botte & Dongchun Ni & Stephan Schenck & Iwan Zimmermann & Mohamed Chami & Nicolas Bocquet & Pascal Egloff & Denis Bucher & Matilde Trabuco & Robert K. Y. Cheng & Janine D. Brunner & Markus A. , 2022. "Cryo-EM structures of a LptDE transporter in complex with Pro-macrobodies offer insight into lipopolysaccharide translocation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Zhuo Cheng & Bei-Bei He & Kangfan Lei & Ying Gao & Yuqi Shi & Zheng Zhong & Hongyan Liu & Runze Liu & Haili Zhang & Song Wu & Wenxuan Zhang & Xiaoyu Tang & Yong-Xin Li, 2024. "Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Chih-Wei Chen & Nadja Leimer & Egor A. Syroegin & Clémence Dunand & Zackery P. Bulman & Kim Lewis & Yury S. Polikanov & Maxim S. Svetlov, 2023. "Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Yuqing Li & Yeying Ma & Yinzheng Xia & Tao Zhang & Shuaishuai Sun & Jiangtao Gao & Hongwei Yao & Huan Wang, 2023. "Discovery and biosynthesis of tricyclic copper-binding ribosomal peptides containing histidine-to-butyrine crosslinks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Shan Wang & Sixing Lin & Qing Fang & Roland Gyampoh & Zhou Lu & Yingli Gao & David J. Clarke & Kewen Wu & Laurent Trembleau & Yi Yu & Kwaku Kyeremeh & Bruce F. Milne & Jioji Tabudravu & Hai Deng, 2022. "A ribosomally synthesised and post-translationally modified peptide containing a β-enamino acid and a macrocyclic motif," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Zhenyan Zhang & Qi Zhang & Tingzhang Wang & Nuohan Xu & Tao Lu & Wenjie Hong & Josep Penuelas & Michael Gillings & Meixia Wang & Wenwen Gao & Haifeng Qian, 2022. "Assessment of global health risk of antibiotic resistance genes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Sarah E. Hanson & Tyrone Dowdy & Mioara Larion & Matthew Thomas Doyle & Harris D. Bernstein, 2024. "The patatin-like protein PlpD forms structurally dynamic homodimers in the Pseudomonas aeruginosa outer membrane," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Jiekai Sun & Xu Wang & Ye Gao & Shuangyu Li & Ziwei Hu & Yan Huang & Baoqiang Fan & Xia Wang & Miao Liu & Chunhua Qiao & Wei Zhang & Yipeng Wang & Xingyue Ji, 2024. "H2S scavenger as a broad-spectrum strategy to deplete bacteria-derived H2S for antibacterial sensitization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Sijia Guo & Shu Wang & Suze Ma & Zixin Deng & Wei Ding & Qi Zhang, 2022. "Radical SAM-dependent ether crosslink in daropeptide biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Paul David Harris & Alessandra Narducci & Christian Gebhardt & Thorben Cordes & Shimon Weiss & Eitan Lerner, 2022. "Multi-parameter photon-by-photon hidden Markov modeling," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Ruihuan Yang & Qing Shi & Tingting Huang & Yichao Yan & Shengzhang Li & Yuan Fang & Ying Li & Linlin Liu & Longyu Liu & Xiaozheng Wang & Yongzheng Peng & Jiangbo Fan & Lifang Zou & Shuangjun Lin & Gon, 2023. "The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Ana Teresa López-Jiménez & Serge Mostowy, 2021. "Emerging technologies and infection models in cellular microbiology," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41445-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.