IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36433-z.html
   My bibliography  Save this article

The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens

Author

Listed:
  • Ruihuan Yang

    (Shanghai Jiao Tong University)

  • Qing Shi

    (Shanghai Jiao Tong University)

  • Tingting Huang

    (Shanghai Jiao Tong University)

  • Yichao Yan

    (Shanghai Jiao Tong University)

  • Shengzhang Li

    (Shanghai Jiao Tong University)

  • Yuan Fang

    (Shanghai Jiao Tong University)

  • Ying Li

    (Shanghai Jiao Tong University)

  • Linlin Liu

    (Shanghai Jiao Tong University)

  • Longyu Liu

    (Shanghai Jiao Tong University)

  • Xiaozheng Wang

    (Shanghai Jiao Tong University)

  • Yongzheng Peng

    (Shanghai Jiao Tong University)

  • Jiangbo Fan

    (Shanghai Jiao Tong University)

  • Lifang Zou

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Shuangjun Lin

    (Shanghai Jiao Tong University)

  • Gongyou Chen

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

Abstract

Natural products largely produced by Pseudomonads-like soil-dwelling microorganisms are a consistent source of antimicrobial metabolites and pesticides. Herein we report the isolation of Pseudomonas mosselii strain 923 from rice rhizosphere soils of paddy fields, which specifically inhibit the growth of plant bacterial pathogens Xanthomonas species and the fungal pathogen Magnaporthe oryzae. The antimicrobial compound is purified and identified as pseudoiodinine using high-resolution mass spectra, nuclear magnetic resonance and single-crystal X-ray diffraction. Genome-wide random mutagenesis, transcriptome analysis and biochemical assays define the pseudoiodinine biosynthetic cluster as psdABCDEFG. Pseudoiodinine biosynthesis is proposed to initiate from guanosine triphosphate and 1,6-didesmethyltoxoflavin is a biosynthetic intermediate. Transposon mutagenesis indicate that GacA is the global regulator. Furthermore, two noncoding small RNAs, rsmY and rsmZ, positively regulate pseudoiodinine transcription, and the carbon storage regulators CsrA2 and CsrA3, which negatively regulate the expression of psdA. A 22.4-fold increase in pseudoiodinine production is achieved by optimizing the media used for fermentation, overexpressing the biosynthetic operon, and removing the CsrA binding sites. Both of the strain 923 and purified pseudoiodinine in planta inhibit the pathogens without affecting the rice host, suggesting that pseudoiodinine can be used to control plant diseases.

Suggested Citation

  • Ruihuan Yang & Qing Shi & Tingting Huang & Yichao Yan & Shengzhang Li & Yuan Fang & Ying Li & Linlin Liu & Longyu Liu & Xiaozheng Wang & Yongzheng Peng & Jiangbo Fan & Lifang Zou & Shuangjun Lin & Gon, 2023. "The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36433-z
    DOI: 10.1038/s41467-023-36433-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36433-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36433-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu Imai & Kirsten J. Meyer & Akira Iinishi & Quentin Favre-Godal & Robert Green & Sylvie Manuse & Mariaelena Caboni & Miho Mori & Samantha Niles & Meghan Ghiglieri & Chandrashekhar Honrao & Xiaoyu Ma , 2019. "A new antibiotic selectively kills Gram-negative pathogens," Nature, Nature, vol. 576(7787), pages 459-464, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanyan Zhou & Zhen Yang & Jinguang Liu & Xudong Li & Xingxiang Wang & Chuanchao Dai & Taolin Zhang & Víctor J. Carrión & Zhong Wei & Fuliang Cao & Manuel Delgado-Baquerizo & Xiaogang Li, 2023. "Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Runrun Wu & Jeremy W. Bakelar & Karl Lundquist & Zijian Zhang & Katie M. Kuo & David Ryoo & Yui Tik Pang & Chen Sun & Tommi White & Thomas Klose & Wen Jiang & James C. Gumbart & Nicholas Noinaj, 2021. "Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Christopher Jonkergouw & Ngong Kodiah Beyeh & Ekaterina Osmekhina & Katarzyna Leskinen & S. Maryamdokht Taimoory & Dmitrii Fedorov & Eduardo Anaya-Plaza & Mauri A. Kostiainen & John F. Trant & Robin H, 2023. "Repurposing host-guest chemistry to sequester virulence and eradicate biofilms in multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Parthasarathi Rath & Adrian Hermann & Ramona Schaefer & Elia Agustoni & Jean-Marie Vonach & Martin Siegrist & Christian Miscenic & Andreas Tschumi & Doris Roth & Christoph Bieniossek & Sebastian Hille, 2023. "High-throughput screening of BAM inhibitors in native membrane environment," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Zhuo Cheng & Bei-Bei He & Kangfan Lei & Ying Gao & Yuqi Shi & Zheng Zhong & Hongyan Liu & Runze Liu & Haili Zhang & Song Wu & Wenxuan Zhang & Xiaoyu Tang & Yong-Xin Li, 2024. "Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Chih-Wei Chen & Nadja Leimer & Egor A. Syroegin & Clémence Dunand & Zackery P. Bulman & Kim Lewis & Yury S. Polikanov & Maxim S. Svetlov, 2023. "Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Katherine L. Fenn & Jim E. Horne & Joel A. Crossley & Nils Böhringer & Romany J. Horne & Till F. Schäberle & Antonio N. Calabrese & Sheena E. Radford & Neil A. Ranson, 2024. "Outer membrane protein assembly mediated by BAM-SurA complexes," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Yuqing Li & Yeying Ma & Yinzheng Xia & Tao Zhang & Shuaishuai Sun & Jiangtao Gao & Hongwei Yao & Huan Wang, 2023. "Discovery and biosynthesis of tricyclic copper-binding ribosomal peptides containing histidine-to-butyrine crosslinks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Shan Wang & Sixing Lin & Qing Fang & Roland Gyampoh & Zhou Lu & Yingli Gao & David J. Clarke & Kewen Wu & Laurent Trembleau & Yi Yu & Kwaku Kyeremeh & Bruce F. Milne & Jioji Tabudravu & Hai Deng, 2022. "A ribosomally synthesised and post-translationally modified peptide containing a β-enamino acid and a macrocyclic motif," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Zhenyan Zhang & Qi Zhang & Tingzhang Wang & Nuohan Xu & Tao Lu & Wenjie Hong & Josep Penuelas & Michael Gillings & Meixia Wang & Wenwen Gao & Haifeng Qian, 2022. "Assessment of global health risk of antibiotic resistance genes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Xu Wang & Sarah B. Nyenhuis & Harris D. Bernstein, 2024. "The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Jiekai Sun & Xu Wang & Ye Gao & Shuangyu Li & Ziwei Hu & Yan Huang & Baoqiang Fan & Xia Wang & Miao Liu & Chunhua Qiao & Wei Zhang & Yipeng Wang & Xingyue Ji, 2024. "H2S scavenger as a broad-spectrum strategy to deplete bacteria-derived H2S for antibacterial sensitization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Sijia Guo & Shu Wang & Suze Ma & Zixin Deng & Wei Ding & Qi Zhang, 2022. "Radical SAM-dependent ether crosslink in daropeptide biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Ana Teresa López-Jiménez & Serge Mostowy, 2021. "Emerging technologies and infection models in cellular microbiology," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    15. Bob Schiffrin & Joel A. Crossley & Martin Walko & Jonathan M. Machin & G. Nasir Khan & Iain W. Manfield & Andrew J. Wilson & David J. Brockwell & Tomas Fessl & Antonio N. Calabrese & Sheena E. Radford, 2024. "Dual client binding sites in the ATP-independent chaperone SurA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36433-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.