IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41417-0.html
   My bibliography  Save this article

Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution

Author

Listed:
  • Manuel Sigle

    (University Hospital Tuebingen, Eberhard Karls University Tuebingen)

  • Anne-Katrin Rohlfing

    (University Hospital Tuebingen, Eberhard Karls University Tuebingen)

  • Martin Kenny

    (University College Dublin
    University College Dublin)

  • Sophia Scheuermann

    (University Children’s Hospital Tuebingen
    University of Tuebingen)

  • Na Sun

    (Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH))

  • Ulla Graeßner

    (University Children’s Hospital Tuebingen)

  • Verena Haug

    (University Hospital Tuebingen, Eberhard Karls University Tuebingen)

  • Jessica Sudmann

    (University Hospital Tuebingen, Eberhard Karls University Tuebingen)

  • Christian M. Seitz

    (University Children’s Hospital Tuebingen
    University of Tuebingen)

  • David Heinzmann

    (University Hospital Tuebingen, Eberhard Karls University Tuebingen)

  • Katja Schenke-Layland

    (University of Tuebingen
    Eberhard Karls University Tuebingen
    NMI Natural and Medical Sciences Institute at the University of Tuebingen)

  • Patricia B. Maguire

    (University College Dublin
    University College Dublin
    University College Dublin)

  • Axel Walch

    (Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH))

  • Julia Marzi

    (University of Tuebingen
    Eberhard Karls University Tuebingen
    NMI Natural and Medical Sciences Institute at the University of Tuebingen)

  • Meinrad Paul Gawaz

    (University Hospital Tuebingen, Eberhard Karls University Tuebingen)

Abstract

Spatial transcriptomics of histological sections have revolutionized research in life sciences and enabled unprecedented insights into genetic processes involved in tissue reorganization. However, in contrast to genomic analysis, the actual biomolecular composition of the sample has fallen behind, leaving a gap of potentially highly valuable information. Raman microspectroscopy provides untargeted spatiomolecular information at high resolution, capable of filling this gap. In this study we demonstrate spatially resolved Raman “spectromics” to reveal homogeneity, heterogeneity and dynamics of cell matrix on molecular levels by repurposing state-of-the-art bioinformatic analysis tools commonly used for transcriptomic analyses. By exploring sections of murine myocardial infarction and cardiac hypertrophy, we identify myocardial subclusters when spatially approaching the pathology, and define the surrounding metabolic and cellular (immune-) landscape. Our innovative, label-free, non-invasive “spectromics” approach could therefore open perspectives for a profound characterization of histological samples, while additionally allowing the combination with consecutive downstream analyses of the very same specimen.

Suggested Citation

  • Manuel Sigle & Anne-Katrin Rohlfing & Martin Kenny & Sophia Scheuermann & Na Sun & Ulla Graeßner & Verena Haug & Jessica Sudmann & Christian M. Seitz & David Heinzmann & Katja Schenke-Layland & Patric, 2023. "Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41417-0
    DOI: 10.1038/s41467-023-41417-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41417-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41417-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiajun Du & Yapeng Su & Chenxi Qian & Dan Yuan & Kun Miao & Dongkwan Lee & Alphonsus H. C. Ng & Reto S. Wijker & Antoni Ribas & Raphael D. Levine & James R. Heath & Lu Wei, 2020. "Raman-guided subcellular pharmaco-metabolomics for metastatic melanoma cells," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    2. Anjali Rao & Dalia Barkley & Gustavo S. França & Itai Yanai, 2021. "Exploring tissue architecture using spatial transcriptomics," Nature, Nature, vol. 596(7871), pages 211-220, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Hua Zhang & Yuan Liu & Lauren Fields & Xudong Shi & Penghsuan Huang & Haiyan Lu & Andrew J. Schneider & Xindi Tang & Luigi Puglielli & Nathan V. Welham & Lingjun Li, 2023. "Single-cell lipidomics enabled by dual-polarity ionization and ion mobility-mass spectrometry imaging," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Reza Mirzazadeh & Zaneta Andrusivova & Ludvig Larsson & Phillip T. Newton & Leire Alonso Galicia & Xesús M. Abalo & Mahtab Avijgan & Linda Kvastad & Alexandre Denadai-Souza & Nathalie Stakenborg & Ale, 2023. "Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Johannes Wirth & Nina Huber & Kelvin Yin & Sophie Brood & Simon Chang & Celia P. Martinez-Jimenez & Matthias Meier, 2023. "Spatial transcriptomics using multiplexed deterministic barcoding in tissue," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Michaela Schwaiger-Haber & Ethan Stancliffe & Dhanalakshmi S. Anbukumar & Blake Sells & Jia Yi & Kevin Cho & Kayla Adkins-Travis & Milan G. Chheda & Leah P. Shriver & Gary J. Patti, 2023. "Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Xiaomeng Wan & Jiashun Xiao & Sindy Sing Ting Tam & Mingxuan Cai & Ryohichi Sugimura & Yang Wang & Xiang Wan & Zhixiang Lin & Angela Ruohao Wu & Can Yang, 2023. "Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Wenyi Yang & Pingping Wang & Shouping Xu & Tao Wang & Meng Luo & Yideng Cai & Chang Xu & Guangfu Xue & Jinhao Que & Qian Ding & Xiyun Jin & Yuexin Yang & Fenglan Pang & Boran Pang & Yi Lin & Huan Nie , 2024. "Deciphering cell–cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Wei Feng & Abha Bais & Haoting He & Cassandra Rios & Shan Jiang & Juan Xu & Cindy Chang & Dennis Kostka & Guang Li, 2022. "Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Zhenzhen Xun & Xinyu Ding & Yao Zhang & Benyan Zhang & Shujing Lai & Duowu Zou & Junke Zheng & Guoqiang Chen & Bing Su & Leng Han & Youqiong Ye, 2023. "Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Antti Kiviaho & Sini K. Eerola & Heini M. L. Kallio & Maria K. Andersen & Miina Hoikka & Aliisa M. Tiihonen & Iida Salonen & Xander Spotbeen & Alexander Giesen & Charles T. A. Parker & Sinja Taavitsai, 2024. "Single cell and spatial transcriptomics highlight the interaction of club-like cells with immunosuppressive myeloid cells in prostate cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Anurendra Kumar & Alex W. Schrader & Bhavay Aggarwal & Ali Ebrahimpour Boroojeny & Marisa Asadian & JuYeon Lee & You Jin Song & Sihai Dave Zhao & Hee-Sun Han & Saurabh Sinha, 2024. "Intracellular spatial transcriptomic analysis toolkit (InSTAnT)," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    15. Connor Stashko & Mary-Kate Hayward & Jason J. Northey & Neil Pearson & Alastair J. Ironside & Johnathon N. Lakins & Roger Oria & Marie-Anne Goyette & Lakyn Mayo & Hege G. Russnes & E. Shelley Hwang & , 2023. "A convolutional neural network STIFMap reveals associations between stromal stiffness and EMT in breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Haoyang Li & Yingxin Lin & Wenjia He & Wenkai Han & Xiaopeng Xu & Chencheng Xu & Elva Gao & Hongyu Zhao & Xin Gao, 2024. "SANTO: a coarse-to-fine alignment and stitching method for spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Zhiyuan Liu & Dafei Wu & Weiwei Zhai & Liang Ma, 2023. "SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Xin Yuan & Yanran Ma & Ruitian Gao & Shuya Cui & Yifan Wang & Botao Fa & Shiyang Ma & Ting Wei & Shuangge Ma & Zhangsheng Yu, 2024. "HEARTSVG: a fast and accurate method for identifying spatially variable genes in large-scale spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Meilin Xue & Youwei Zhu & Yongsheng Jiang & Lijie Han & Minmin Shi & Rui Su & Liwen Wang & Cheng Xiong & Chaofu Wang & Ting Wang & Shijie Deng & Dong Wu & Yizhi Cao & Lei Dong & Fan Bai & Shulin Zhao , 2023. "Schwann cells regulate tumor cells and cancer-associated fibroblasts in the pancreatic ductal adenocarcinoma microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Kian Kalhor & Chien-Ju Chen & Ho Suk Lee & Matthew Cai & Mahsa Nafisi & Richard Que & Carter R. Palmer & Yixu Yuan & Yida Zhang & Xuwen Li & Jinghui Song & Amanda Knoten & Blue B. Lake & Joseph P. Gau, 2024. "Mapping human tissues with highly multiplexed RNA in situ hybridization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41417-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.