Author
Listed:
- Xu Liao
(The Chinese University of Hong Kong-Shenzhen
Duke-NUS Medical School)
- Lican Kang
(Wuhan University
Wuhan University)
- Yihao Peng
(The Chinese University of Hong Kong-Shenzhen)
- Xiaoran Chai
(Duke-NUS Medical School)
- Peng Xie
(Southeast University)
- Chengqi Lin
(Southeast University)
- Hongkai Ji
(Johns Hopkins Bloomberg School of Public Health)
- Yuling Jiao
(Wuhan University
Wuhan University)
- Jin Liu
(The Chinese University of Hong Kong-Shenzhen)
Abstract
Recently, RNA velocity has driven a paradigmatic change in single-cell RNA sequencing (scRNA-seq) studies, allowing the reconstruction and prediction of directed trajectories in cell differentiation and state transitions. Most existing methods of dynamic modeling use ordinary differential equations (ODE) for individual genes without applying multivariate approaches. However, this modeling strategy inadequately captures the intrinsically stochastic nature of transcriptional dynamics governed by a cell-specific latent time across multiple genes, potentially leading to erroneous results. Here, we present SDEvelo, a generative approach to inferring RNA velocity by modeling the dynamics of unspliced and spliced RNAs via multivariate stochastic differential equations (SDE). Uniquely, SDEvelo explicitly models inherent uncertainty in transcriptional dynamics while estimating a cell-specific latent time across genes. Using both simulated and four scRNA-seq and spatial transcriptomics datasets, we show that SDEvelo can model the random dynamic patterns of mature-state cells while accurately detecting carcinogenesis. Additionally, the estimated gene-shared latent time can facilitate many downstream analyses for biological discovery. We demonstrate that SDEvelo is computationally scalable and applicable to both scRNA-seq and sequencing-based spatial transcriptomics data.
Suggested Citation
Xu Liao & Lican Kang & Yihao Peng & Xiaoran Chai & Peng Xie & Chengqi Lin & Hongkai Ji & Yuling Jiao & Jin Liu, 2024.
"Multivariate stochastic modeling for transcriptional dynamics with cell-specific latent time using SDEvelo,"
Nature Communications, Nature, vol. 15(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55146-5
DOI: 10.1038/s41467-024-55146-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55146-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.