IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38403-x.html
   My bibliography  Save this article

Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem

Author

Listed:
  • Michaela Schwaiger-Haber

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Ethan Stancliffe

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Dhanalakshmi S. Anbukumar

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Blake Sells

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Jia Yi

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Kevin Cho

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Kayla Adkins-Travis

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Milan G. Chheda

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Leah P. Shriver

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Gary J. Patti

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

Abstract

Tumors are comprised of a multitude of cell types spanning different microenvironments. Mass spectrometry imaging (MSI) has the potential to identify metabolic patterns within the tumor ecosystem and surrounding tissues, but conventional workflows have not yet fully integrated the breadth of experimental techniques in metabolomics. Here, we combine MSI, stable isotope labeling, and a spatial variant of Isotopologue Spectral Analysis to map distributions of metabolite abundances, nutrient contributions, and metabolic turnover fluxes across the brains of mice harboring GL261 glioma, a widely used model for glioblastoma. When integrated with MSI, the combination of ion mobility, desorption electrospray ionization, and matrix assisted laser desorption ionization reveals alterations in multiple anabolic pathways. De novo fatty acid synthesis flux is increased by approximately 3-fold in glioma relative to surrounding healthy tissue. Fatty acid elongation flux is elevated even higher at 8-fold relative to surrounding healthy tissue and highlights the importance of elongase activity in glioma.

Suggested Citation

  • Michaela Schwaiger-Haber & Ethan Stancliffe & Dhanalakshmi S. Anbukumar & Blake Sells & Jia Yi & Kevin Cho & Kayla Adkins-Travis & Milan G. Chheda & Leah P. Shriver & Gary J. Patti, 2023. "Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38403-x
    DOI: 10.1038/s41467-023-38403-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38403-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38403-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anjali Rao & Dalia Barkley & Gustavo S. França & Itai Yanai, 2021. "Exploring tissue architecture using spatial transcriptomics," Nature, Nature, vol. 596(7871), pages 211-220, August.
    2. Ramon C. Sun & Teresa W.-M. Fan & Pan Deng & Richard M. Higashi & Andrew N. Lane & Anh-Thu Le & Timothy L. Scott & Qiushi Sun & Marc O. Warmoes & Ye Yang, 2017. "Noninvasive liquid diet delivery of stable isotopes into mouse models for deep metabolic network tracing," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Hua Zhang & Yuan Liu & Lauren Fields & Xudong Shi & Penghsuan Huang & Haiyan Lu & Andrew J. Schneider & Xindi Tang & Luigi Puglielli & Nathan V. Welham & Lingjun Li, 2023. "Single-cell lipidomics enabled by dual-polarity ionization and ion mobility-mass spectrometry imaging," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Wei Liu & Xu Liao & Ziye Luo & Yi Yang & Mai Chan Lau & Yuling Jiao & Xingjie Shi & Weiwei Zhai & Hongkai Ji & Joe Yeong & Jin Liu, 2023. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Reza Mirzazadeh & Zaneta Andrusivova & Ludvig Larsson & Phillip T. Newton & Leire Alonso Galicia & Xesús M. Abalo & Mahtab Avijgan & Linda Kvastad & Alexandre Denadai-Souza & Nathalie Stakenborg & Ale, 2023. "Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Johannes Wirth & Nina Huber & Kelvin Yin & Sophie Brood & Simon Chang & Celia P. Martinez-Jimenez & Matthias Meier, 2023. "Spatial transcriptomics using multiplexed deterministic barcoding in tissue," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Xiaomeng Wan & Jiashun Xiao & Sindy Sing Ting Tam & Mingxuan Cai & Ryohichi Sugimura & Yang Wang & Xiang Wan & Zhixiang Lin & Angela Ruohao Wu & Can Yang, 2023. "Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    10. Wenyi Yang & Pingping Wang & Shouping Xu & Tao Wang & Meng Luo & Yideng Cai & Chang Xu & Guangfu Xue & Jinhao Que & Qian Ding & Xiyun Jin & Yuexin Yang & Fenglan Pang & Boran Pang & Yi Lin & Huan Nie , 2024. "Deciphering cell–cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Xinyu Hu & Bob van Sluijs & Óscar García-Blay & Yury Stepanov & Koen Rietrae & Wilhelm T. S. Huck & Maike M. K. Hansen, 2024. "ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Linhua Wang & Mirjana Maletic-Savatic & Zhandong Liu, 2022. "Region-specific denoising identifies spatial co-expression patterns and intra-tissue heterogeneity in spatially resolved transcriptomics data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Zhuoxuan Li & Tianjie Wang & Pentao Liu & Yuanhua Huang, 2023. "SpatialDM for rapid identification of spatially co-expressed ligand–receptor and revealing cell–cell communication patterns," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Wei Feng & Abha Bais & Haoting He & Cassandra Rios & Shan Jiang & Juan Xu & Cindy Chang & Dennis Kostka & Guang Li, 2022. "Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    16. Lulu Shang & Xiang Zhou, 2022. "Spatially aware dimension reduction for spatial transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    17. Honglei Ren & Benjamin L. Walker & Zixuan Cang & Qing Nie, 2022. "Identifying multicellular spatiotemporal organization of cells with SpaceFlow," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Zhenzhen Xun & Xinyu Ding & Yao Zhang & Benyan Zhang & Shujing Lai & Duowu Zou & Junke Zheng & Guoqiang Chen & Bing Su & Leng Han & Youqiong Ye, 2023. "Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Antti Kiviaho & Sini K. Eerola & Heini M. L. Kallio & Maria K. Andersen & Miina Hoikka & Aliisa M. Tiihonen & Iida Salonen & Xander Spotbeen & Alexander Giesen & Charles T. A. Parker & Sinja Taavitsai, 2024. "Single cell and spatial transcriptomics highlight the interaction of club-like cells with immunosuppressive myeloid cells in prostate cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Jongsu Choi & Jin Li & Salma Ferdous & Qingnan Liang & Jeffrey R. Moffitt & Rui Chen, 2023. "Spatial organization of the mouse retina at single cell resolution by MERFISH," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38403-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.