IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41371-x.html
   My bibliography  Save this article

Multistage coupling water-enabled electric generator with customizable energy output

Author

Listed:
  • Puying Li

    (Tsinghua University)

  • Yajie Hu

    (Tsinghua University)

  • Wenya He

    (Tsinghua University)

  • Bing Lu

    (Tsinghua University)

  • Haiyan Wang

    (Tsinghua University)

  • Huhu Cheng

    (Tsinghua University)

  • Liangti Qu

    (Tsinghua University)

Abstract

Constant water circulation between land, ocean and atmosphere contains great and sustainable energy, which has been successfully employed to generate electricity by the burgeoning water-enabled electric generator. However, water in various forms (e.g. liquid, moisture) is inevitably discharged after one-time use in current single-stage water-enabled electric generators, resulting in the huge waste of inherent energy within water circulation. Herein, a multistage coupling water-enabled electric generator is proposed, which utilizes the internal liquid flow and subsequently generated moisture to produce electricity synchronously, achieving a maximum output power density of ~92 mW m−2 (~11 W m−3). Furthermore, a distributary design for internal water in different forms enables the integration of water-flow-enabled and moisture-diffusion-enabled electricity generation layers into mc-WEG by a “flexible building blocks” strategy. Through a three-stage adjustment process encompassing size control, space optimization, and large-scale integration, the multistage coupling water-enabled electric generator realizes the customized electricity output for diverse electronics. Twenty-two units connected in series can deliver ~10 V and ~280 μA, which can directly lighten a table lamp for 30 min without aforehand capacitor charging. In addition, multistage coupling water-enabled electric generators exhibit excellent flexibility and environmental adaptability, providing a way for the development of water-enabled electric generators.

Suggested Citation

  • Puying Li & Yajie Hu & Wenya He & Bing Lu & Haiyan Wang & Huhu Cheng & Liangti Qu, 2023. "Multistage coupling water-enabled electric generator with customizable energy output," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41371-x
    DOI: 10.1038/s41467-023-41371-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41371-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41371-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin Tan & Sunmiao Fang & Zhuhua Zhang & Jun Yin & Luxian Li & Xiang Wang & Wanlin Guo, 2022. "Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Haiyan Wang & Tiancheng He & Xuanzhang Hao & Yaxin Huang & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "Moisture adsorption-desorption full cycle power generation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Yaxin Huang & Huhu Cheng & Ce Yang & Panpan Zhang & Qihua Liao & Houze Yao & Gaoquan Shi & Liangti Qu, 2018. "Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Zhen Zhang & Li He & Congcong Zhu & Yongchao Qian & Liping Wen & Lei Jiang, 2020. "Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Ce Yang & Haiyan Wang & Jiaxin Bai & Tiancheng He & Huhu Cheng & Tianlei Guang & Houze Yao & Liangti Qu, 2022. "Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Xiaomeng Liu & Hongyan Gao & Joy E. Ward & Xiaorong Liu & Bing Yin & Tianda Fu & Jianhan Chen & Derek R. Lovley & Jun Yao, 2020. "Power generation from ambient humidity using protein nanowires," Nature, Nature, vol. 578(7796), pages 550-554, February.
    7. Xiaomeng Liu & Toshiyuki Ueki & Hongyan Gao & Trevor L. Woodard & Kelly P. Nevin & Tianda Fu & Shuai Fu & Lu Sun & Derek R. Lovley & Jun Yao, 2022. "Microbial biofilms for electricity generation from water evaporation and power to wearables," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Jun Yin & Zhuhua Zhang & Xuemei Li & Jin Yu & Jianxin Zhou & Yaqing Chen & Wanlin Guo, 2014. "Waving potential in graphene," Nature Communications, Nature, vol. 5(1), pages 1-6, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renxuan Yuan & Huizeng Li & Zhipeng Zhao & An Li & Luanluan Xue & Kaixuan Li & Xiao Deng & Xinye Yu & Rujun Li & Quan Liu & Yanlin Song, 2024. "Hermetic hydrovoltaic cell sustained by internal water circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenyue Guo & Huajie Tang & Pengfei Wang & Qihao Xu & Haodan Pan & Xinyu Zhao & Fan Fan & Tingxian Li & Dongliang Zhao, 2024. "Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Renxuan Yuan & Huizeng Li & Zhipeng Zhao & An Li & Luanluan Xue & Kaixuan Li & Xiao Deng & Xinye Yu & Rujun Li & Quan Liu & Yanlin Song, 2024. "Hermetic hydrovoltaic cell sustained by internal water circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Su Yang & Lei Zhang & Jianfeng Mao & Jianmiao Guo & Yang Chai & Jianhua Hao & Wei Chen & Xiaoming Tao, 2024. "Green moisture-electric generator based on supramolecular hydrogel with tens of milliamp electricity toward practical applications," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Jiao, Shipu & Li, Yang & Li, Jingyu & Zhang, Yihao & Maryam, Bushra & Xu, Shuo & Liu, Miao & Li, Jiaxuan & Liu, Wanxin & Liu, Xianhua, 2024. "Water-enabled electricity generation on film structures: From materials to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Jin Tan & Sunmiao Fang & Zhuhua Zhang & Jun Yin & Luxian Li & Xiang Wang & Wanlin Guo, 2022. "Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Guoping Ren & Jie Ye & Qichang Hu & Dong Zhang & Yong Yuan & Shungui Zhou, 2024. "Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Yuanyuan Zhao & Ju Liu & Gang Lu & Jinliang Zhang & Liyang Wan & Shan Peng & Chao Li & Yanlei Wang & Mingzhan Wang & Hongyan He & John H. Xin & Yulong Ding & Shuang Zheng, 2024. "Diurnal humidity cycle driven selective ion transport across clustered polycation membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Ce Yang & Haiyan Wang & Jiaxin Bai & Tiancheng He & Huhu Cheng & Tianlei Guang & Houze Yao & Liangti Qu, 2022. "Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Haiyan Wang & Tiancheng He & Xuanzhang Hao & Yaxin Huang & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "Moisture adsorption-desorption full cycle power generation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Yong Zhang & Tingting Yang & Kedong Shang & Fengmei Guo & Yuanyuan Shang & Shulong Chang & Licong Cui & Xulei Lu & Zhongbao Jiang & Jian Zhou & Chunqiao Fu & Qi-Chang He, 2022. "Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Lifeng Wang & Haiyan Wang & Chunxiao Wu & Jiaxin Bai & Tiancheng He & Yan Li & Huhu Cheng & Liangti Qu, 2024. "Moisture-enabled self-charging and voltage stabilizing supercapacitor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Zhuyuan Wang & Ting Hu & Mike Tebyetekerwa & Xiangkang Zeng & Fan Du & Yuan Kang & Xuefeng Li & Hao Zhang & Huanting Wang & Xiwang Zhang, 2024. "Electricity generation from carbon dioxide adsorption by spatially nanoconfined ion separation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    16. Han, Bo & Chakraborty, Anutosh, 2024. "Recent advances in metal-organic frameworks for adsorption heat transformations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    17. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    18. Xiang Li & Roujuan Li & Shaoxin Li & Zhong Lin Wang & Di Wei, 2024. "Triboiontronics with temporal control of electrical double layer formation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Jin Wang & Zheng Cui & Shangzhen Li & Zeyuan Song & Miaolu He & Danxi Huang & Yuan Feng & YanZheng Liu & Ke Zhou & Xudong Wang & Lei Wang, 2024. "Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41371-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.