IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55030-2.html
   My bibliography  Save this article

Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films

Author

Listed:
  • Zhenguo Gao

    (The Hong Kong Polytechnic University)

  • Cuiqin Fang

    (The Hong Kong Polytechnic University)

  • Yuanyuan Gao

    (The Hong Kong Polytechnic University)

  • Xin Yin

    (The Hong Kong Polytechnic University)

  • Siyuan Zhang

    (The Hong Kong Polytechnic University)

  • Jian Lu

    (The Hong Kong Polytechnic University)

  • Guanglei Wu

    (Qingdao University)

  • Hongjing Wu

    (Northwestern Polytechnical University)

  • Bingang Xu

    (The Hong Kong Polytechnic University)

Abstract

Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect. As demonstration, a wireless energy interactive system is established for electromagnetic-moist coupled energy harvesting and signal transmission through highly integrated polyelectrolyte/conjugated conductive polymer bilayer ionic diode films as dynamic energy-switching carriers. The gradient distribution of ions within the films, excited by moist energy, enables the ionic rectification and further endows the films with electromagnetic energy harvesting capability. In turn, the absorbed electromagnetic energy drives the directional migration of charge carriers and internal ionic current. By rationally regulating the electrolyte and dielectric properties of ionic diodes, it becomes feasible to control targeted electric signals and energy outputs under coupled electromagnetic-moist environment. This work is a step towards enabling enhanced smart interactivities for wirelessly driven flexible electronics.

Suggested Citation

  • Zhenguo Gao & Cuiqin Fang & Yuanyuan Gao & Xin Yin & Siyuan Zhang & Jian Lu & Guanglei Wu & Hongjing Wu & Bingang Xu, 2025. "Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55030-2
    DOI: 10.1038/s41467-024-55030-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55030-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55030-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin Tan & Sunmiao Fang & Zhuhua Zhang & Jun Yin & Luxian Li & Xiang Wang & Wanlin Guo, 2022. "Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Zeadally, Sherali & Shaikh, Faisal Karim & Talpur, Anum & Sheng, Quan Z., 2020. "Design architectures for energy harvesting in the Internet of Things," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Naoji Matsuhisa & Simiao Niu & Stephen J. K. O’Neill & Jiheong Kang & Yuto Ochiai & Toru Katsumata & Hung-Chin Wu & Minoru Ashizawa & Ging-Ji Nathan Wang & Donglai Zhong & Xuelin Wang & Xiwen Gong & R, 2021. "High-frequency and intrinsically stretchable polymer diodes," Nature, Nature, vol. 600(7888), pages 246-252, December.
    4. Yong Zhang & Tingting Yang & Kedong Shang & Fengmei Guo & Yuanyuan Shang & Shulong Chang & Licong Cui & Xulei Lu & Zhongbao Jiang & Jian Zhou & Chunqiao Fu & Qi-Chang He, 2022. "Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Pengrong Lyu & Dirk J. Broer & Danqing Liu, 2024. "Advancing interactive systems with liquid crystal network-based adaptive electronics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Xiaomeng Liu & Hongyan Gao & Joy E. Ward & Xiaorong Liu & Bing Yin & Tianda Fu & Jianhan Chen & Derek R. Lovley & Jun Yao, 2020. "Power generation from ambient humidity using protein nanowires," Nature, Nature, vol. 578(7796), pages 550-554, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su Yang & Lei Zhang & Jianfeng Mao & Jianmiao Guo & Yang Chai & Jianhua Hao & Wei Chen & Xiaoming Tao, 2024. "Green moisture-electric generator based on supramolecular hydrogel with tens of milliamp electricity toward practical applications," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Peng Duan & Chenxing Wang & Yinpeng Huang & Chunqiao Fu & Xulei Lu & Yong Zhang & Yuming Yao & Lei Chen & Qi-Chang He & Linmao Qian & Tingting Yang, 2025. "Moisture-based green energy harvesting over 600 hours via photocatalysis-enhanced hydrovoltaic effect," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Chenyue Guo & Huajie Tang & Pengfei Wang & Qihao Xu & Haodan Pan & Xinyu Zhao & Fan Fan & Tingxian Li & Dongliang Zhao, 2024. "Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Renxuan Yuan & Huizeng Li & Zhipeng Zhao & An Li & Luanluan Xue & Kaixuan Li & Xiao Deng & Xinye Yu & Rujun Li & Quan Liu & Yanlin Song, 2024. "Hermetic hydrovoltaic cell sustained by internal water circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Jiao, Shipu & Li, Yang & Li, Jingyu & Zhang, Yihao & Maryam, Bushra & Xu, Shuo & Liu, Miao & Li, Jiaxuan & Liu, Wanxin & Liu, Xianhua, 2024. "Water-enabled electricity generation on film structures: From materials to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Puying Li & Yajie Hu & Wenya He & Bing Lu & Haiyan Wang & Huhu Cheng & Liangti Qu, 2023. "Multistage coupling water-enabled electric generator with customizable energy output," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Guoping Ren & Jie Ye & Qichang Hu & Dong Zhang & Yong Yuan & Shungui Zhou, 2024. "Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Yisha Jiang & Wenchao Liu & Tao Wang & Yitian Wu & Tingting Mei & Li Wang & Guoheng Xu & Yude Wang & Nannan Liu & Kai Xiao, 2024. "A nanofluidic chemoelectrical generator with enhanced energy harvesting by ion-electron Coulomb drag," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Zhuyuan Wang & Ting Hu & Mike Tebyetekerwa & Xiangkang Zeng & Fan Du & Yuan Kang & Xuefeng Li & Hao Zhang & Huanting Wang & Xiwang Zhang, 2024. "Electricity generation from carbon dioxide adsorption by spatially nanoconfined ion separation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Yang Li & Nan Li & Wei Liu & Aleksander Prominski & Seounghun Kang & Yahao Dai & Youdi Liu & Huawei Hu & Shinya Wai & Shilei Dai & Zhe Cheng & Qi Su & Ping Cheng & Chen Wei & Lihua Jin & Jeffrey A. Hu, 2023. "Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Sheeraz Kirmani & Abdul Mazid & Irfan Ahmad Khan & Manaullah Abid, 2022. "A Survey on IoT-Enabled Smart Grids: Technologies, Architectures, Applications, and Challenges," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    12. Hung-Chin Wu & Shayla Nikzad & Chenxin Zhu & Hongping Yan & Yang Li & Weijun Niu & James R. Matthews & Jie Xu & Naoji Matsuhisa & Prajwal Kammardi Arunachala & Reza Rastak & Christian Linder & Yu-Qing, 2023. "Highly stretchable polymer semiconductor thin films with multi-modal energy dissipation and high relative stretchability," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    14. Ce Yang & Haiyan Wang & Jiaxin Bai & Tiancheng He & Huhu Cheng & Tianlei Guang & Houze Yao & Liangti Qu, 2022. "Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Tang, Liangyu & Han, Yang & Zalhaf, Amr S. & Zhou, Siyu & Yang, Ping & Wang, Congling & Huang, Tao, 2024. "Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    17. Nan Gan & Xin Zou & Zhao Qian & Anqi Lv & Lan Wang & Huili Ma & Hu-Jun Qian & Long Gu & Zhongfu An & Wei Huang, 2024. "Stretchable phosphorescent polymers by multiphase engineering," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Haiyan Wang & Tiancheng He & Xuanzhang Hao & Yaxin Huang & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "Moisture adsorption-desorption full cycle power generation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Qiang, Ziyi & Cui, Peilin & Tian, Chenyun & Liu, Runkeng & Shen, Hong & Liu, Zhenyu, 2023. "Enhancing power generation for carbon black film device based on optimization of liquid capillary flow," Applied Energy, Elsevier, vol. 351(C).
    20. Muhammad Abdullah Sheeraz & Muhammad Sohail Malik & Khalid Rehman & Hassan Elahi & Zubair Butt & Iftikhar Ahmad & Marco Eugeni & Paolo Gaudenzi, 2021. "Numerical Assessment and Parametric Optimization of a Piezoelectric Wind Energy Harvester for IoT-Based Applications," Energies, MDPI, vol. 14(9), pages 1-19, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55030-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.