IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4582.html
   My bibliography  Save this article

Waving potential in graphene

Author

Listed:
  • Jun Yin

    (State Key Laboratory of Mechanics and Control of Mechanical Structures, The Key Laboratory of Intelligent Nano Materials and Devices of DoE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics)

  • Zhuhua Zhang

    (State Key Laboratory of Mechanics and Control of Mechanical Structures, The Key Laboratory of Intelligent Nano Materials and Devices of DoE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics)

  • Xuemei Li

    (State Key Laboratory of Mechanics and Control of Mechanical Structures, The Key Laboratory of Intelligent Nano Materials and Devices of DoE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics)

  • Jin Yu

    (State Key Laboratory of Mechanics and Control of Mechanical Structures, The Key Laboratory of Intelligent Nano Materials and Devices of DoE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics)

  • Jianxin Zhou

    (State Key Laboratory of Mechanics and Control of Mechanical Structures, The Key Laboratory of Intelligent Nano Materials and Devices of DoE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics)

  • Yaqing Chen

    (State Key Laboratory of Mechanics and Control of Mechanical Structures, The Key Laboratory of Intelligent Nano Materials and Devices of DoE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics)

  • Wanlin Guo

    (State Key Laboratory of Mechanics and Control of Mechanical Structures, The Key Laboratory of Intelligent Nano Materials and Devices of DoE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics)

Abstract

Nanoscale materials offer much promise in the pursuit of high-efficient energy conversion technology owing to their exceptional sensitivity to external stimulus. In particular, experiments have demonstrated that flowing water over carbon nanotubes can generate electric voltages. However, the reported flow-induced voltages are in wide discrepancy and the proposed mechanisms remain conflictive. Here we find that moving a liquid–gas boundary along a piece of graphene can induce a waving potential of up to 0.1 V. The potential is proportional to the moving velocity and the graphene length inserted into ionic solutions, but sharply decreases with increasing graphene layers and vanishes in other materials. This waving potential arises from charge transfer in graphene driven by a moving boundary of an electric double layer between graphene and ionic solutions. The results reveal a unique electrokinetic phenomenon and open prospects for functional sensors, such as tsunami monitors.

Suggested Citation

  • Jun Yin & Zhuhua Zhang & Xuemei Li & Jin Yu & Jianxin Zhou & Yaqing Chen & Wanlin Guo, 2014. "Waving potential in graphene," Nature Communications, Nature, vol. 5(1), pages 1-6, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4582
    DOI: 10.1038/ncomms4582
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4582
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Xin & Youzi Zhang & Ruiling Wang & Yijin Wang & Peng Guo & Xuanhua Li, 2023. "Hydrovoltaic effect-enhanced photocatalysis by polyacrylic acid/cobaltous oxide–nitrogen doped carbon system for efficient photocatalytic water splitting," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    3. Jiao, Shipu & Li, Yang & Li, Jingyu & Zhang, Yihao & Maryam, Bushra & Xu, Shuo & Liu, Miao & Li, Jiaxuan & Liu, Wanxin & Liu, Xianhua, 2024. "Water-enabled electricity generation on film structures: From materials to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Jin Tan & Sunmiao Fang & Zhuhua Zhang & Jun Yin & Luxian Li & Xiang Wang & Wanlin Guo, 2022. "Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Yong Zhang & Tingting Yang & Kedong Shang & Fengmei Guo & Yuanyuan Shang & Shulong Chang & Licong Cui & Xulei Lu & Zhongbao Jiang & Jian Zhou & Chunqiao Fu & Qi-Chang He, 2022. "Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Puying Li & Yajie Hu & Wenya He & Bing Lu & Haiyan Wang & Huhu Cheng & Liangti Qu, 2023. "Multistage coupling water-enabled electric generator with customizable energy output," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.