Similarity principle based multi-physical parameter unification and comparison in salinity-gradient osmotic energy conversion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.118312
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhen Zhang & Li He & Congcong Zhu & Yongchao Qian & Liping Wen & Lei Jiang, 2020. "Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
- Kai Xiao & Lu Chen & Ruotian Chen & Tobias Heil & Saul Daniel Cruz Lemus & Fengtao Fan & Liping Wen & Lei Jiang & Markus Antonietti, 2019. "Artificial light-driven ion pump for photoelectric energy conversion," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
- Jiandong Feng & Michael Graf & Ke Liu & Dmitry Ovchinnikov & Dumitru Dumcenco & Mohammad Heiranian & Vishal Nandigana & Narayana R. Aluru & Andras Kis & Aleksandra Radenovic, 2016. "Single-layer MoS2 nanopores as nanopower generators," Nature, Nature, vol. 536(7615), pages 197-200, August.
- Weiwen Xin & Zhen Zhang & Xiaodong Huang & Yuhao Hu & Teng Zhou & Congcong Zhu & Xiang-Yu Kong & Lei Jiang & Liping Wen, 2019. "High-performance silk-based hybrid membranes employed for osmotic energy conversion," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
- Thomas B. H. Schroeder & Anirvan Guha & Aaron Lamoureux & Gloria VanRenterghem & David Sept & Max Shtein & Jerry Yang & Michael Mayer, 2017. "An electric-eel-inspired soft power source from stacked hydrogels," Nature, Nature, vol. 552(7684), pages 214-218, December.
- Alessandro Siria & Philippe Poncharal & Anne-Laure Biance & Rémy Fulcrand & Xavier Blase & Stephen T. Purcell & Lydéric Bocquet, 2013. "Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube," Nature, Nature, vol. 494(7438), pages 455-458, February.
- Zhen Zhang & Sheng Yang & Panpan Zhang & Jian Zhang & Guangbo Chen & Xinliang Feng, 2019. "Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, X.F. & Zhang, X. & Qu, Z.G. & Pu, J.Q. & Wang, Q., 2022. "Thermal-enhanced nanofluidic osmotic energy conversion with the interfacial photothermal method," Applied Energy, Elsevier, vol. 326(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiao, Yanmei & Yang, Chun & Zhang, Wenyao & Wang, Qiuwang & Zhao, Cunlu, 2024. "A review on direct osmotic power generation: Mechanism and membranes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Zhang, X.F. & Zhang, X. & Qu, Z.G. & Pu, J.Q. & Wang, Q., 2022. "Thermal-enhanced nanofluidic osmotic energy conversion with the interfacial photothermal method," Applied Energy, Elsevier, vol. 326(C).
- Song, Dongxing & Li, Lu & Huang, Ce & Wang, Ke, 2023. "Synergy between ionic thermoelectric conversion and nanofluidic reverse electrodialysis for high power density generation," Applied Energy, Elsevier, vol. 334(C).
- Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
- Chen, Xi & Wang, Lu & Zhou, Ruhong & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "pH-depended behaviors of electrolytes in nanofluidic salinity gradient energy harvesting," Renewable Energy, Elsevier, vol. 211(C), pages 31-41.
- Di Wei & Feiyao Yang & Zhuoheng Jiang & Zhonglin Wang, 2022. "Flexible iontronics based on 2D nanofluidic material," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Jin Wang & Zheng Cui & Shangzhen Li & Zeyuan Song & Miaolu He & Danxi Huang & Yuan Feng & YanZheng Liu & Ke Zhou & Xudong Wang & Lei Wang, 2024. "Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- S. Pullanchery & S. Kulik & T. Schönfeldová & C. K. Egan & G. Cassone & A. Hassanali & S. Roke, 2024. "pH drives electron density fluctuations that enhance electric field-induced liquid flow," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Zhen Zhang & Preeti Bhauriyal & Hafeesudeen Sahabudeen & Zhiyong Wang & Xiaohui Liu & Mike Hambsch & Stefan C. B. Mannsfeld & Renhao Dong & Thomas Heine & Xinliang Feng, 2022. "Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Chengcheng Zhu & Li Xu & Yazi Liu & Jiang Liu & Jin Wang & Hanjun Sun & Ya-Qian Lan & Chen Wang, 2024. "Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Wang, Y. & Wang, H. & Wan, C.Q., 2018. "The effect of colloids on nanofluidic power generation," Energy, Elsevier, vol. 160(C), pages 863-867.
- Weipeng Xian & Xiuhui Zuo & Changjia Zhu & Qing Guo & Qing-Wei Meng & Xincheng Zhu & Sai Wang & Shengqian Ma & Qi Sun, 2022. "Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Hye-Eun Lee & Tomoyo Okumura & Hideshi Ooka & Kiyohiro Adachi & Takaaki Hikima & Kunio Hirata & Yoshiaki Kawano & Hiroaki Matsuura & Masaki Yamamoto & Masahiro Yamamoto & Akira Yamaguchi & Ji-Eun Lee , 2024. "Osmotic energy conversion in serpentinite-hosted deep-sea hydrothermal vents," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Nawapong Unsuree & Sorasak Phanphak & Pongthep Prajongtat & Aritsa Bunpheng & Kulpavee Jitapunkul & Pornpis Kongputhon & Pannaree Srinoi & Pawin Iamprasertkun & Wisit Hirunpinyopas, 2021. "A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives," Energies, MDPI, vol. 14(18), pages 1-38, September.
- Yuanyuan Zhao & Ju Liu & Gang Lu & Jinliang Zhang & Liyang Wan & Shan Peng & Chao Li & Yanlei Wang & Mingzhan Wang & Hongyan He & John H. Xin & Yulong Ding & Shuang Zheng, 2024. "Diurnal humidity cycle driven selective ion transport across clustered polycation membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Rezakazemi, Mashallah & Arabi Shamsabadi, Ahmad & Lin, Haiqing & Luis, Patricia & Ramakrishna, Seeram & Aminabhavi, Tejraj M., 2021. "Sustainable MXenes-based membranes for highly energy-efficient separations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Chen, Xi & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2022. "Impacts of transmembrane pH gradient on nanofluidic salinity gradient energy conversion," Renewable Energy, Elsevier, vol. 187(C), pages 440-449.
- Renxuan Yuan & Huizeng Li & Zhipeng Zhao & An Li & Luanluan Xue & Kaixuan Li & Xiao Deng & Xinye Yu & Rujun Li & Quan Liu & Yanlin Song, 2024. "Hermetic hydrovoltaic cell sustained by internal water circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
More about this item
Keywords
Salinity-gradient osmotic energy conversion; Ion selective transport; Similarity principle; Dimensionless analysis; Sensitivity analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921015683. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.