IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41039-6.html
   My bibliography  Save this article

Notch and retinoic acid signals regulate macrophage formation from endocardium downstream of Nkx2-5

Author

Listed:
  • Norika Liu

    (The Jikei University School of Medicine, Department of Cell Physiology
    University of California Los Angeles, Department of Molecular Cell and Developmental Biology)

  • Naofumi Kawahira

    (University of California Los Angeles, Department of Molecular Cell and Developmental Biology)

  • Yasuhiro Nakashima

    (Kyoto University, Department of Cardiovascular Medicine)

  • Haruko Nakano

    (University of California Los Angeles, Department of Molecular Cell and Developmental Biology)

  • Akiyasu Iwase

    (University of Tokyo, Department of Physiological Chemistry and Metabolism)

  • Yasunobu Uchijima

    (University of Tokyo, Department of Physiological Chemistry and Metabolism)

  • Mei Wang

    (The Jikei University School of Medicine, Department of Cell Physiology)

  • Sean M. Wu

    (Stanford University, Cardiovascular Institute and Division of Cardiovascular Medicine, Department of Medicine)

  • Susumu Minamisawa

    (The Jikei University School of Medicine, Department of Cell Physiology)

  • Hiroki Kurihara

    (University of Tokyo, Department of Physiological Chemistry and Metabolism)

  • Atsushi Nakano

    (The Jikei University School of Medicine, Department of Cell Physiology
    University of California Los Angeles, Department of Molecular Cell and Developmental Biology
    University of California Los Angeles, David Geffen Department of Medicine, Division of Cardiology
    University of California, Los Angeles)

Abstract

Hematopoietic progenitors are enriched in the endocardial cushion and contribute, in a Nkx2-5-dependent manner, to tissue macrophages required for the remodeling of cardiac valves and septa. However, little is known about the molecular mechanism of endocardial-hematopoietic transition. In the current study, we identified the regulatory network of endocardial hematopoiesis. Signal network analysis from scRNA-seq datasets revealed that genes in Notch and retinoic acid (RA) signaling are significantly downregulated in Nkx2-5-null endocardial cells. In vivo and ex vivo analyses validate that the Nkx2-5-Notch axis is essential for the generation of both hemogenic and cushion endocardial cells, and the suppression of RA signaling via Dhrs3 expression plays important roles in further differentiation into macrophages. Genetic ablation study revealed that these macrophages are essential in cardiac valve remodeling. In summary, the study demonstrates that the Nkx2-5/Notch/RA signaling plays a pivotal role in macrophage differentiation from hematopoietic progenitors.

Suggested Citation

  • Norika Liu & Naofumi Kawahira & Yasuhiro Nakashima & Haruko Nakano & Akiyasu Iwase & Yasunobu Uchijima & Mei Wang & Sean M. Wu & Susumu Minamisawa & Hiroki Kurihara & Atsushi Nakano, 2023. "Notch and retinoic acid signals regulate macrophage formation from endocardium downstream of Nkx2-5," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41039-6
    DOI: 10.1038/s41467-023-41039-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41039-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41039-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael J. Chen & Tomomasa Yokomizo & Brandon M. Zeigler & Elaine Dzierzak & Nancy A. Speck, 2009. "Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter," Nature, Nature, vol. 457(7231), pages 887-891, February.
    2. T. Yvanka de Soysa & Sanjeev S. Ranade & Satoshi Okawa & Srikanth Ravichandran & Yu Huang & Hazel T. Salunga & Amelia Schricker & Antonio del Sol & Casey A. Gifford & Deepak Srivastava, 2019. "Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects," Nature, Nature, vol. 572(7767), pages 120-124, August.
    3. Yingyao Zhou & Bin Zhou & Lars Pache & Max Chang & Alireza Hadj Khodabakhshi & Olga Tanaseichuk & Christopher Benner & Sumit K. Chanda, 2019. "Metascape provides a biologist-oriented resource for the analysis of systems-level datasets," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Calum C. Bain & Catherine A. Hawley & Hannah Garner & Charlotte L. Scott & Anika Schridde & Nicholas J. Steers & Matthias Mack & Anagha Joshi & Martin Guilliams & Allan Mc I. Mowat & Frederic Geissman, 2016. "Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities," Nature Communications, Nature, vol. 7(1), pages 1-14, September.
    5. Haruko Nakano & Xiaoqian Liu & Armin Arshi & Yasuhiro Nakashima & Ben van Handel & Rajkumar Sasidharan & Andrew W. Harmon & Jae-Ho Shin & Robert J. Schwartz & Simon J. Conway & Richard P. Harvey & Moh, 2013. "Haemogenic endocardium contributes to transient definitive haematopoiesis," Nature Communications, Nature, vol. 4(1), pages 1-10, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dorothee Bornhorst & Amulya V. Hejjaji & Lena Steuter & Nicole M. Woodhead & Paul Maier & Alessandra Gentile & Alice Alhajkadour & Octavia Santis Larrain & Michael Weber & Khrievono Kikhi & Stefan Gue, 2024. "The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hikaru Hayashi & Sayaka Seki & Takeshi Tomita & Masayoshi Kato & Norihiro Ashihara & Tokuhiro Chano & Hideki Sanjo & Miwa Kawade & Chenhui Yan & Hiroki Sakai & Hidenori Tomida & Miyuki Tanaka & Mai Iw, 2025. "Synthetic short mRNA prevents metastasis via innate-adaptive immunity," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    2. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Shambhu Yadav & Markus Waldeck-Weiermair & Fotios Spyropoulos & Roderick Bronson & Arvind K. Pandey & Apabrita Ayan Das & Alexander C. Sisti & Taylor A. Covington & Venkata Thulabandu & Shari Caplan &, 2023. "Sensory ataxia and cardiac hypertrophy caused by neurovascular oxidative stress in chemogenetic transgenic mouse lines," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Andreas Herchenröther & Stefanie Gossen & Tobias Friedrich & Alexander Reim & Nadine Daus & Felix Diegmüller & Jörg Leers & Hakimeh Moghaddas Sani & Sarah Gerstner & Leah Schwarz & Inga Stellmacher & , 2023. "The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Hao A. Duong & Kenkichi Baba & Jason P. DeBruyne & Alec J. Davidson & Christopher Ehlen & Michael Powell & Gianluca Tosini, 2024. "Environmental circadian disruption re-writes liver circadian proteomes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Ramachandran Prakasam & Angela Bonadiman & Roberta Andreotti & Emanuela Zuccaro & Davide Dalfovo & Caterina Marchioretti & Debasmita Tripathy & Gianluca Petris & Eric N. Anderson & Alice Migazzi & Lau, 2023. "LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    7. Li Guo & Cheng Hu & Yang Liu & Xiaoyu Chen & Deli Song & Runling Shen & Zhanzhen Liu & Xudong Jia & Qinfen Zhang & Yuanzhu Gao & Zhezhi Deng & Tao Zuo & Jun Hu & Wenbo Zhu & Jing Cai & Guangmei Yan & , 2023. "Directed natural evolution generates a next-generation oncolytic virus with a high potency and safety profile," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    9. Tianshi Feng & Xuemei Zhao & Ping Gu & Wah Yang & Cunchuan Wang & Qingyu Guo & Qiaoyun Long & Qing Liu & Ying Cheng & Jin Li & Cynthia Kwan Yui Cheung & Donghai Wu & Xinyu Kong & Yong Xu & Dewei Ye & , 2022. "Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Elisa Bellucci & Andrea Benazzo & Chunming Xu & Elena Bitocchi & Monica Rodriguez & Saleh Alseekh & Valerio Di Vittori & Tania Gioia & Kerstin Neumann & Gaia Cortinovis & Giulia Frascarelli & Ester Mu, 2023. "Selection and adaptive introgression guided the complex evolutionary history of the European common bean," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Jiayin Peng & Lili Han & Biao Liu & Jiawen Song & Yuang Wang & Kunpeng Wang & Qian Guo & XinYan Liu & Yu Li & Jujin Zhang & Wenqing Wu & Sheng Li & Xin Fu & Cheng-le Zhuang & Weikang Zhang & Shengbao , 2023. "Gli1 marks a sentinel muscle stem cell population for muscle regeneration," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Brent S. Perlman & Noah Burget & Yeqiao Zhou & Gregory W. Schwartz & Jelena Petrovic & Zora Modrusan & Robert B. Faryabi, 2024. "Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    13. Elisa Setten & Alessandra Castagna & Josué Manik Nava-Sedeño & Jonathan Weber & Roberta Carriero & Andreas Reppas & Valery Volk & Jessica Schmitz & Wilfried Gwinner & Haralampos Hatzikirou & Friedrich, 2022. "Understanding fibrosis pathogenesis via modeling macrophage-fibroblast interplay in immune-metabolic context," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    14. Jennifer Gherardini & Youhei Uchida & Jonathan A Hardman & Jérémy Chéret & Kimberly Mace & Marta Bertolini & Ralf Paus, 2020. "Tissue-resident macrophages can be generated de novo in adult human skin from resident progenitor cells during substance P-mediated neurogenic inflammation ex vivo," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-16, January.
    15. Andrea Zanetti & Gwendal Dujardin & Lucas Fares-Taie & Jeanne Amiel & Jérôme E. Roger & Isabelle Audo & Matthieu P. Robert & Pierre David & Vincent Jung & Nicolas Goudin & Ida Chiara Guerrera & Stépha, 2024. "GPATCH11 variants cause mis-splicing and early-onset retinal dystrophy with neurological impairment," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    16. Dafne Ibarra-Morales & Michael Rauer & Piergiuseppe Quarato & Leily Rabbani & Fides Zenk & Mariana Schulte-Sasse & Francesco Cardamone & Alejandro Gomez-Auli & Germano Cecere & Nicola Iovino, 2021. "Histone variant H2A.Z regulates zygotic genome activation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    17. Xueguang Zhang & Gelin Huang & Ting Jiang & Lanlan Meng & Tongtong Li & Guohui Zhang & Nan Wu & Xinyi Chen & Bingwang Zhao & Nana Li & Sixian Wu & Junceng Guo & Rui Zheng & Zhiliang Ji & Zhigang Xu & , 2024. "CEP112 coordinates translational regulation of essential fertility genes during spermiogenesis through phase separation in humans and mice," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    18. Ryuki Shimada & Yuzuru Kato & Naoki Takeda & Sayoko Fujimura & Kei-ichiro Yasunaga & Shingo Usuki & Hitoshi Niwa & Kimi Araki & Kei-ichiro Ishiguro, 2023. "STRA8–RB interaction is required for timely entry of meiosis in mouse female germ cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Xiang He & Daiqin Xiong & Lei Zhao & Jialong Fu & Lingfei Luo, 2024. "Meningeal lymphatic supporting cells govern the formation and maintenance of zebrafish mural lymphatic endothelial cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Guilherme Reis-de-Oliveira & Victor Corasolla Carregari & Gabriel Rodrigues dos Reis de Sousa & Daniel Martins-de-Souza, 2024. "OmicScope unravels systems-level insights from quantitative proteomics data," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41039-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.