IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40956-w.html
   My bibliography  Save this article

A transcriptional response to replication stress selectively expands a subset of Brca2-mutant mammary epithelial cells

Author

Listed:
  • Maryam Ghaderi Najafabadi

    (University of Cambridge)

  • G. Kenneth Gray

    (Harvard Medical School (HMS))

  • Li Ren Kong

    (University of Cambridge
    National University of Singapore
    National University of Singapore
    National University of Singapore)

  • Komal Gupta

    (University of Cambridge
    National University of Singapore
    National University of Singapore)

  • David Perera

    (University of Cambridge)

  • Huw Naylor

    (University of Cambridge)

  • Joan S. Brugge

    (Harvard Medical School (HMS))

  • Ashok R. Venkitaraman

    (University of Cambridge
    National University of Singapore
    Institute of Molecular & Cellular Biology Agency for Science, Technology and Research (A∗STAR))

  • Mona Shehata

    (University of Cambridge
    University of Cambridge)

Abstract

Germline BRCA2 mutation carriers frequently develop luminal-like breast cancers, but it remains unclear how BRCA2 mutations affect mammary epithelial subpopulations. Here, we report that monoallelic Brca2mut/WT mammary organoids subjected to replication stress activate a transcriptional response that selectively expands Brca2mut/WT luminal cells lacking hormone receptor expression (HR-). While CyTOF analyses reveal comparable epithelial compositions among wildtype and Brca2mut/WT mammary glands, Brca2mut/WT HR- luminal cells exhibit greater organoid formation and preferentially survive and expand under replication stress. ScRNA-seq analysis corroborates the expansion of HR- luminal cells which express elevated transcript levels of Tetraspanin-8 (Tspan8) and Thrsp, plus pathways implicated in replication stress survival including Type I interferon responses. Notably, CRISPR/Cas9-mediated deletion of Tspan8 or Thrsp prevents Brca2mut/WT HR- luminal cell expansion. Our findings indicate that Brca2mut/WT cells activate a transcriptional response after replication stress that preferentially favours outgrowth of HR- luminal cells through the expression of interferon-responsive and mammary alveolar genes.

Suggested Citation

  • Maryam Ghaderi Najafabadi & G. Kenneth Gray & Li Ren Kong & Komal Gupta & David Perera & Huw Naylor & Joan S. Brugge & Ashok R. Venkitaraman & Mona Shehata, 2023. "A transcriptional response to replication stress selectively expands a subset of Brca2-mutant mammary epithelial cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40956-w
    DOI: 10.1038/s41467-023-40956-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40956-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40956-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rajshekhar R. Giraddi & Mona Shehata & Mercedes Gallardo & Maria A. Blasco & Benjamin D. Simons & John Stingl, 2015. "Stem and progenitor cell division kinetics during postnatal mouse mammary gland development," Nature Communications, Nature, vol. 6(1), pages 1-12, December.
    2. Karsten Bach & Sara Pensa & Marta Grzelak & James Hadfield & David J. Adams & John C. Marioni & Walid T. Khaled, 2017. "Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    3. Karsten Bach & Sara Pensa & Marija Zarocsinceva & Katarzyna Kania & Julie Stockis & Silvain Pinaud & Kyren A. Lazarus & Mona Shehata & Bruno M. Simões & Alice R. Greenhalgh & Sacha J. Howell & Robert , 2021. "Time-resolved single-cell analysis of Brca1 associated mammary tumourigenesis reveals aberrant differentiation of luminal progenitors," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Jennifer M. Rosenbluth & Ron C. J. Schackmann & G. Kenneth Gray & Laura M. Selfors & Carman Man-Chung Li & Mackenzie Boedicker & Hendrik J. Kuiken & Andrea Richardson & Jane Brock & Judy Garber & Debo, 2020. "Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    5. Lina Ding & Ying Su & Anne Fassl & Kunihiko Hinohara & Xintao Qiu & Nicholas W. Harper & Sung Jin Huh & Noga Bloushtain-Qimron & Bojana Jovanović & Muhammad Ekram & Xiaoyuan Zi & William C. Hines & Ma, 2019. "Perturbed myoepithelial cell differentiation in BRCA mutation carriers and in ductal carcinoma in situ," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    6. Elizabeth M. Kass & Pei Xin Lim & Hildur R. Helgadottir & Mary Ellen Moynahan & Maria Jasin, 2016. "Robust homology-directed repair within mouse mammary tissue is not specifically affected by Brca2 mutation," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    7. Purna A. Joshi & Hartland W. Jackson & Alexander G. Beristain & Marco A. Di Grappa & Patricia A. Mote & Christine L. Clarke & John Stingl & Paul D. Waterhouse & Rama Khokha, 2010. "Progesterone induces adult mammary stem cell expansion," Nature, Nature, vol. 465(7299), pages 803-807, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Sofia Rocha & Alejandro Collado-Solé & Osvaldo Graña-Castro & Jaime Redondo-Pedraza & Gonzalo Soria-Alcaide & Alex Cordero & Patricia G. Santamaría & Eva González-Suárez, 2023. "Luminal Rank loss decreases cell fitness leading to basal cell bipotency in parous mammary glands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Elena Spina & Julia Simundza & Angela Incassati & Anupama Chandramouli & Matthias C. Kugler & Ziyan Lin & Alireza Khodadadi-Jamayran & Christine J. Watson & Pamela Cowin, 2022. "Gpr125 is a unifying hallmark of multiple mammary progenitors coupled to tumor latency," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Joseph G. Kern & Andrew M. Tilston-Lunel & Anthony Federico & Boting Ning & Amy Mueller & Grace B. Peppler & Eleni Stampouloglou & Nan Cheng & Randy L. Johnson & Marc E. Lenburg & Jennifer E. Beane & , 2022. "Inactivation of LATS1/2 drives luminal-basal plasticity to initiate basal-like mammary carcinomas," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Yeo-Jun Yoon & Donghyun Kim & Kwon Yong Tak & Seungyeon Hwang & Jisun Kim & Nam Suk Sim & Jae-Min Cho & Dojin Choi & Yongmi Ji & Junho K. Hur & Hyunki Kim & Jong-Eun Park & Jae-Yol Lim, 2022. "Salivary gland organoid culture maintains distinct glandular properties of murine and human major salivary glands," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Tom W. Andrew & Lauren S. Koepke & Yuting Wang & Michael Lopez & Holly Steininger & Danielle Struck & Tatiana Boyko & Thomas H. Ambrosi & Xinming Tong & Yuxi Sun & Gunsagar S. Gulati & Matthew P. Murp, 2022. "Sexually dimorphic estrogen sensing in skeletal stem cells controls skeletal regeneration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Zhengcheng He & Ryan Ghorayeb & Susanna Tan & Ke Chen & Amanda C. Lorentzian & Jack Bottyan & Syed Mohammed Musheer Aalam & Miguel Angel Pujana & Philipp F. Lange & Nagarajan Kannan & Connie J. Eaves , 2022. "Pathogenic BRCA1 variants disrupt PLK1-regulation of mitotic spindle orientation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Naser Ansari-Pour & Yonglan Zheng & Toshio F. Yoshimatsu & Ayodele Sanni & Mustapha Ajani & Jean-Baptiste Reynier & Avraam Tapinos & Jason J. Pitt & Stefan Dentro & Anna Woodard & Padma Sheila Rajagop, 2021. "Whole-genome analysis of Nigerian patients with breast cancer reveals ethnic-driven somatic evolution and distinct genomic subtypes," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    8. Maria Fankhaenel & Farahnaz S. Golestan Hashemi & Larissa Mourao & Emily Lucas & Manal M. Hosawi & Paul Skipp & Xavier Morin & Colinda L.G.J. Scheele & Salah Elias, 2023. "Annexin A1 is a polarity cue that directs mitotic spindle orientation during mammalian epithelial morphogenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Maša Alečković & Simona Cristea & Carlos R. Gil Del Alcazar & Pengze Yan & Lina Ding & Ethan D. Krop & Nicholas W. Harper & Ernesto Rojas Jimenez & Donghao Lu & Anushree C. Gulvady & Pierre Foidart & , 2022. "Breast cancer prevention by short-term inhibition of TGFβ signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Vincent Geldhof & Laura P. M. H. Rooij & Liliana Sokol & Jacob Amersfoort & Maxim Schepper & Katerina Rohlenova & Griet Hoste & Adriaan Vanderstichele & Anne-Marie Delsupehe & Edoardo Isnaldi & Naima , 2022. "Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Xing Yang & Haibo Xu & Xu Yang & Hui Wang & Li Zou & Qin Yang & Xiaopeng Qi & Li Li & Hongxia Duan & Xiyun Yan & Nai Yang Fu & Jing Tan & Zongliu Hou & Baowei Jiao, 2024. "Mcam inhibits macrophage-mediated development of mammary gland through non-canonical Wnt signaling," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Francesca Mateo & Zhengcheng He & Lin Mei & Gorka Ruiz de Garibay & Carmen Herranz & Nadia García & Amanda Lorentzian & Alexandra Baiges & Eline Blommaert & Antonio Gómez & Oriol Mirallas & Anna Garri, 2022. "Modification of BRCA1-associated breast cancer risk by HMMR overexpression," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Alecia-Jane Twigger & Lisa K. Engelbrecht & Karsten Bach & Isabel Schultz-Pernice & Sara Pensa & Jack Stenning & Stefania Petricca & Christina H. Scheel & Walid T. Khaled, 2022. "Transcriptional changes in the mammary gland during lactation revealed by single cell sequencing of cells from human milk," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40956-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.