IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40907-5.html
   My bibliography  Save this article

Genome-resolved correlation mapping links microbial community structure to metabolic interactions driving methane production from wastewater

Author

Listed:
  • Brandon Kieft

    (University of British Columbia)

  • Niko Finke

    (University of British Columbia)

  • Ryan J. McLaughlin

    (University of British Columbia
    University of British Columbia)

  • Aditi N. Nallan

    (University of British Columbia
    University of British Columbia)

  • Martin Krzywinski

    (BC Cancer Agency)

  • Sean A. Crowe

    (University of British Columbia
    University of British Columbia)

  • Steven J. Hallam

    (University of British Columbia
    University of British Columbia
    University of British Columbia
    University of British Columbia)

Abstract

Anaerobic digestion of municipal mixed sludge produces methane that can be converted into renewable natural gas. To improve economics of this microbial mediated process, metabolic interactions catalyzing biomass conversion to energy need to be identified. Here, we present a two-year time series associating microbial metabolism and physicochemistry in a full-scale wastewater treatment plant. By creating a co-occurrence network with thousands of time-resolved microbial populations from over 100 samples spanning four operating configurations, known and novel microbial consortia with potential to drive methane production were identified. Interactions between these populations were further resolved in relation to specific process configurations by mapping metagenome assembled genomes and cognate gene expression data onto the network. Prominent interactions included transcriptionally active Methanolinea methanogens and syntrophic benzoate oxidizing Syntrophorhabdus, as well as a Methanoregulaceae population and putative syntrophic acetate oxidizing bacteria affiliated with Bateroidetes (Tenuifilaceae) expressing the glycine cleavage bypass of the Wood–Ljungdahl pathway.

Suggested Citation

  • Brandon Kieft & Niko Finke & Ryan J. McLaughlin & Aditi N. Nallan & Martin Krzywinski & Sean A. Crowe & Steven J. Hallam, 2023. "Genome-resolved correlation mapping links microbial community structure to metabolic interactions driving methane production from wastewater," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40907-5
    DOI: 10.1038/s41467-023-40907-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40907-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40907-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alyse K. Hawley & Masaru K. Nobu & Jody J. Wright & W. Evan Durno & Connor Morgan-Lang & Brent Sage & Patrick Schwientek & Brandon K. Swan & Christian Rinke & Monica Torres-Beltrán & Keith Mewis & Wen, 2017. "Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. Westerholm, Maria & Moestedt, Jan & Schnürer, Anna, 2016. "Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance," Applied Energy, Elsevier, vol. 179(C), pages 124-135.
    3. Zachary D Kurtz & Christian L Müller & Emily R Miraldi & Dan R Littman & Martin J Blaser & Richard A Bonneau, 2015. "Sparse and Compositionally Robust Inference of Microbial Ecological Networks," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
    2. Song, Yapeng & Hu, Wanrong & Qiao, Wei & Westerholm, Maria & Wandera, Simon M. & Dong, Renjie, 2022. "Upgrading the performance of high solids feeding anaerobic digestion of chicken manure under extremely high ammonia level," Renewable Energy, Elsevier, vol. 194(C), pages 13-20.
    3. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    4. Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Bi, Shaojie & Westerholm, Maria & Hu, Wanrong & Mahdy, Ahmed & Dong, Taili & Sun, Yingcai & Qiao, Wei & Dong, Renjie, 2021. "The metabolic performance and microbial communities of anaerobic digestion of chicken manure under stressed ammonia condition: A case study of a 10-year successful biogas plant," Renewable Energy, Elsevier, vol. 167(C), pages 644-651.
    6. Yapeng Song & Wei Qiao & Jiahao Zhang & Renjie Dong, 2023. "Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review," Energies, MDPI, vol. 16(12), pages 1-22, June.
    7. Elvira E. Ziganshina & Svetlana S. Bulynina & Ayrat M. Ziganshin, 2022. "Impact of Granular Activated Carbon on Anaerobic Process and Microbial Community Structure during Mesophilic and Thermophilic Anaerobic Digestion of Chicken Manure," Sustainability, MDPI, vol. 14(1), pages 1-20, January.
    8. Jiarui Lu & Pixu Shi & Hongzhe Li, 2019. "Generalized linear models with linear constraints for microbiome compositional data," Biometrics, The International Biometric Society, vol. 75(1), pages 235-244, March.
    9. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Li, Lianwei & Li, Wendy & Zou, Quan & Ma, Zhanshan (Sam), 2020. "Network analysis of the hot spring microbiome sketches out possible niche differentiations among ecological guilds," Ecological Modelling, Elsevier, vol. 431(C).
    11. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    12. Qin Liu & Qi Su & Fen Zhang & Hein M. Tun & Joyce Wing Yan Mak & Grace Chung-Yan Lui & Susanna So Shan Ng & Jessica Y. L. Ching & Amy Li & Wenqi Lu & Chenyu Liu & Chun Pan Cheung & David S. C. Hui & P, 2022. "Multi-kingdom gut microbiota analyses define COVID-19 severity and post-acute COVID-19 syndrome," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Kim, Kipoong & Park, Jaesung & Jung, Sungkyu, 2024. "Principal component analysis for zero-inflated compositional data," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    14. Zhou, Man & Li, Cheng & Ni, Fuquan & Chen, Anjun & Li, Meiliang & Shen, Guanghui & Deng, Yu & Deng, Liangwei, 2022. "Packed activated carbon particles triggered a more robust syntrophic pathway for acetate oxidation-hydrogenotrophic methanogenesis at extremely high ammonia concentrations," Renewable Energy, Elsevier, vol. 191(C), pages 305-317.
    15. Xi Peng & Shang Wang & Miaoxiao Wang & Kai Feng & Qing He & Xingsheng Yang & Weiguo Hou & Fangru Li & Yuxiang Zhao & Baolan Hu & Xiao Zou & Ye Deng, 2024. "Metabolic interdependencies in thermophilic communities are revealed using co-occurrence and complementarity networks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Andersson, Johanna & Helander-Claesson, Jonas & Olsson, Jesper, 2020. "Study on reduced process temperature for energy optimisation in mesophilic digestion: A lab to full-scale study," Applied Energy, Elsevier, vol. 271(C).
    17. Seung Gu Shin & Joonyeob Lee & Trong Hoan Do & Su In Kim & Seokhwan Hwang, 2019. "Application of Response Surface Analysis to Evaluate the Effect of Concentrations of Ammonia and Propionic Acid on Acetate-Utilizing Methanogenesis," Energies, MDPI, vol. 12(17), pages 1-13, September.
    18. Pratheepa Jeganathan & Susan P. Holmes, 2021. "A Statistical Perspective on the Challenges in Molecular Microbial Biology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 131-160, June.
    19. Ana Popovic & Celine Bourdon & Pauline W. Wang & David S. Guttman & Sajid Soofi & Zulfiqar A. Bhutta & Robert H. J. Bandsma & John Parkinson & Lisa G. Pell, 2021. "Micronutrient supplements can promote disruptive protozoan and fungal communities in the developing infant gut," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    20. Rieser, Christopher & Filzmoser, Peter, 2023. "Extending compositional data analysis from a graph signal processing perspective," Journal of Multivariate Analysis, Elsevier, vol. 198(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40907-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.