IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40697-w.html
   My bibliography  Save this article

Water-assisted hydrogen spillover in Pt nanoparticle-based metal–organic framework composites

Author

Listed:
  • Zhida Gu

    (Northeastern University
    Nanjing Tech University (NanjingTech))

  • Mengke Li

    (Nanjing Tech University (NanjingTech))

  • Cheng Chen

    (Nanjing Tech University (NanjingTech))

  • Xinglong Zhang

    (Nanjing Tech University (NanjingTech))

  • Chengyang Luo

    (Nanjing Tech University (NanjingTech))

  • Yutao Yin

    (Nanjing Tech University (NanjingTech))

  • Ruifa Su

    (Nanjing Tech University (NanjingTech))

  • Suoying Zhang

    (Nanjing Tech University (NanjingTech))

  • Yu Shen

    (Nanjing University of Posts & Telecommunications)

  • Yu Fu

    (Northeastern University)

  • Weina Zhang

    (Nanjing Tech University (NanjingTech))

  • Fengwei Huo

    (Nanjing Tech University (NanjingTech))

Abstract

Hydrogen spillover is the migration of activated hydrogen atoms from a metal particle onto the surface of catalyst support, which has made significant progress in heterogeneous catalysis. The phenomenon has been well researched on oxide supports, yet its occurrence, detection method and mechanism on non-oxide supports such as metal–organic frameworks (MOFs) remain controversial. Herein, we develop a facile strategy for efficiency enhancement of hydrogen spillover on various MOFs with the aid of water molecules. By encapsulating platinum (Pt) nanoparticles in MOF-801 for activating hydrogen and hydrogenation of C=C in the MOF ligand as activated hydrogen detector, a research platform is built with Pt@MOF-801 to measure the hydrogenation region for quantifying the efficiency and spatial extent of hydrogen spillover. A water-assisted hydrogen spillover path is found with lower migration energy barrier than the traditional spillover path via ligand. The synergy of the two paths explains a significant boost of hydrogen spillover in MOF-801 from imperceptible existence to spanning at least 100-nm-diameter region. Moreover, such strategy shows universality in different MOF and covalent organic framework materials for efficiency promotion of hydrogen spillover and improvement of catalytic activity and antitoxicity, opening up new horizons for catalyst design in porous crystalline materials.

Suggested Citation

  • Zhida Gu & Mengke Li & Cheng Chen & Xinglong Zhang & Chengyang Luo & Yutao Yin & Ruifa Su & Suoying Zhang & Yu Shen & Yu Fu & Weina Zhang & Fengwei Huo, 2023. "Water-assisted hydrogen spillover in Pt nanoparticle-based metal–organic framework composites," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40697-w
    DOI: 10.1038/s41467-023-40697-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40697-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40697-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guowu Zhan & Hua Chun Zeng, 2018. "Hydrogen spillover through Matryoshka-type (ZIFs@)n−1ZIFs nanocubes," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Mingwu Tan & Yanling Yang & Ying Yang & Jiali Chen & Zhaoxia Zhang & Gang Fu & Jingdong Lin & Shaolong Wan & Shuai Wang & Yong Wang, 2022. "Hydrogen spillover assisted by oxygenate molecules over nonreducible oxides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Waiz Karim & Clelia Spreafico & Armin Kleibert & Jens Gobrecht & Joost VandeVondele & Yasin Ekinci & Jeroen A. van Bokhoven, 2017. "Catalyst support effects on hydrogen spillover," Nature, Nature, vol. 541(7635), pages 68-71, January.
    4. Jiankang Zhang & Zhe Gao & Sen Wang & Guofu Wang & Xiaofeng Gao & Baiyan Zhang & Shuangfeng Xing & Shichao Zhao & Yong Qin, 2019. "Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Zhe Gao & Guofu Wang & Tingyu Lei & Zhengxing Lv & Mi Xiong & Liancheng Wang & Shuangfeng Xing & Jingyuan Ma & Zheng Jiang & Yong Qin, 2022. "Enhanced hydrogen generation by reverse spillover effects over bicomponent catalysts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Juhwan Im & Hyeyoung Shin & Haeyoun Jang & Hyungjun Kim & Minkee Choi, 2014. "Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    7. Mi Xiong & Zhe Gao & Peng Zhao & Guofu Wang & Wenjun Yan & Shuangfeng Xing & Pengfei Wang & Jingyuan Ma & Zheng Jiang & Xingchen Liu & Jiping Ma & Jie Xu & Yong Qin, 2020. "In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Kohsuke Mori & Naoki Hashimoto & Naoto Kamiuchi & Hideto Yoshida & Hisayoshi Kobayashi & Hiromi Yamashita, 2021. "Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao-Jue Bai & Caoyu Yang & Zhiyong Tang, 2024. "Enabling long-distance hydrogen spillover in nonreducible metal-organic frameworks for catalytic reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Jue Bai & Caoyu Yang & Zhiyong Tang, 2024. "Enabling long-distance hydrogen spillover in nonreducible metal-organic frameworks for catalytic reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Kazuki Shun & Kohsuke Mori & Takumi Kidawara & Satoshi Ichikawa & Hiromi Yamashita, 2024. "Heteroatom doping enables hydrogen spillover via H+/e− diffusion pathways on a non-reducible metal oxide," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Mingwu Tan & Yanling Yang & Ying Yang & Jiali Chen & Zhaoxia Zhang & Gang Fu & Jingdong Lin & Shaolong Wan & Shuai Wang & Yong Wang, 2022. "Hydrogen spillover assisted by oxygenate molecules over nonreducible oxides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Zhi Wen Chen & Jian Li & Pengfei Ou & Jianan Erick Huang & Zi Wen & LiXin Chen & Xue Yao & GuangMing Cai & Chun Cheng Yang & Chandra Veer Singh & Qing Jiang, 2024. "Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Qiaoxi Liu & Wenjie Xu & Hao Huang & Hongwei Shou & Jingxiang Low & Yitao Dai & Wanbing Gong & Youyou Li & Delong Duan & Wenqing Zhang & Yawen Jiang & Guikai Zhang & Dengfeng Cao & Kecheng Wei & Ran L, 2024. "Spectroscopic visualization of reversible hydrogen spillover between palladium and metal–organic frameworks toward catalytic semihydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Jinqi Xiong & Shanjun Mao & Qian Luo & Honghui Ning & Bing Lu & Yanling Liu & Yong Wang, 2024. "Mediating trade-off between activity and selectivity in alkynes semi-hydrogenation via a hydrophilic polar layer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Xuemei Wu & Chengwei Wang & Shengying Zhao & Yang Wang & Tao Zhang & Jie Yao & Weizhe Gao & Baizhang Zhang & Taiki Arakawa & Yingluo He & Fei Chen & Minghui Tan & Guohui Yang & Noritatsu Tsubaki, 2024. "Dual-engine-driven realizing high-yield synthesis of Para-Xylene directly from CO2-containing syngas," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Chengsheng Yang & Sicong Ma & Yongmei Liu & Lihua Wang & Desheng Yuan & Wei-Peng Shao & Lunjia Zhang & Fan Yang & Tiejun Lin & Hongxin Ding & Heyong He & Zhi-Pan Liu & Yong Cao & Yifeng Zhu & Xinhe Ba, 2024. "Homolytic H2 dissociation for enhanced hydrogenation catalysis on oxides," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Feilong Xing & Jiamin Ma & Ken-ichi Shimizu & Shinya Furukawa, 2022. "High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Li, Sen & Guo, Longhui & He, Xinyu & Qiao, Congzhen & Tian, Yajie, 2022. "Synthesis of uniform Ni nanoparticles encapsulated in ZSM–5 for selective hydrodeoxygenation of phenolics," Renewable Energy, Elsevier, vol. 194(C), pages 89-99.
    11. Yijing Liu & Rankun Zhang & Le Lin & Yichao Wang & Changping Liu & Rentao Mu & Qiang Fu, 2023. "Direct observation of accelerating hydrogen spillover via surface-lattice-confinement effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Shenghui Zhou & Wenrui Ma & Uzma Anjum & Mohammadreza Kosari & Shibo Xi & Sergey M. Kozlov & Hua Chun Zeng, 2023. "Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Zhenglong Fan & Fan Liao & Yujin Ji & Yang Liu & Hui Huang & Dan Wang & Kui Yin & Haiwei Yang & Mengjie Ma & Wenxiang Zhu & Meng Wang & Zhenhui Kang & Youyong Li & Mingwang Shao & Zhiwei Hu & Qi Shao, 2022. "Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Jaianth Vijayakumar & Tatiana M. Savchenko & David M. Bracher & Gunnar Lumbeeck & Armand Béché & Jo Verbeeck & Štefan Vajda & Frithjof Nolting & C.A.F. Vaz & Armin Kleibert, 2023. "Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Song, Miaojia & Zhang, Xinghua & Chen, Yubao & Zhang, Qi & Chen, Lungang & Liu, Jianguo & Ma, Longlong, 2023. "Hydroprocessing of lipids: An effective production process for sustainable aviation fuel," Energy, Elsevier, vol. 283(C).
    17. Tianjiao Wang & Yu Xin & Bingfeng Chen & Bin Zhang & Sen Luan & Minghua Dong & Yuxuan Wu & Xiaomeng Cheng & Ye Liu & Huizhen Liu & Buxing Han, 2024. "Selective hydrodeoxygenation of α, β-unsaturated carbonyl compounds to alkenes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Jiace Hao & Zechao Zhuang & Kecheng Cao & Guohua Gao & Chan Wang & Feili Lai & Shuanglong Lu & Piming Ma & Weifu Dong & Tianxi Liu & Mingliang Du & Han Zhu, 2022. "Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Zhang, J. & He, L. & Yao, Y. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Zhou, D.W., 2020. "Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2," Renewable Energy, Elsevier, vol. 154(C), pages 1229-1239.
    20. Chen, Jiateng & Xu, Le & Shen, Boxiong, 2024. "Recent advances in tandem electrocatalysis of carbon dioxide: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40697-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.