IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35846-0.html
   My bibliography  Save this article

Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles

Author

Listed:
  • Jaianth Vijayakumar

    (Paul Scherrer Institut)

  • Tatiana M. Savchenko

    (Paul Scherrer Institut)

  • David M. Bracher

    (Paul Scherrer Institut)

  • Gunnar Lumbeeck

    (University of Antwerp)

  • Armand Béché

    (University of Antwerp)

  • Jo Verbeeck

    (University of Antwerp)

  • Štefan Vajda

    (Czech Academy of Sciences)

  • Frithjof Nolting

    (Paul Scherrer Institut)

  • C.A.F. Vaz

    (Paul Scherrer Institut)

  • Armin Kleibert

    (Paul Scherrer Institut)

Abstract

Understanding chemical reactivity and magnetism of 3d transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to Co3O4 and void formation due to the nanoscale Kirkendall effect. The Co nanoparticles remain highly reactive toward oxygen during phase (i), demonstrating the absence of a pressure gap whereby a low reactivity at low pressures is postulated. Our results provide an important benchmark for the development of theoretical models for the chemical reactivity in catalysis and magnetism during metal oxidation at the nanoscale.

Suggested Citation

  • Jaianth Vijayakumar & Tatiana M. Savchenko & David M. Bracher & Gunnar Lumbeeck & Armand Béché & Jo Verbeeck & Štefan Vajda & Frithjof Nolting & C.A.F. Vaz & Armin Kleibert, 2023. "Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35846-0
    DOI: 10.1038/s41467-023-35846-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35846-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35846-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Waiz Karim & Clelia Spreafico & Armin Kleibert & Jens Gobrecht & Joost VandeVondele & Yasin Ekinci & Jeroen A. van Bokhoven, 2017. "Catalyst support effects on hydrogen spillover," Nature, Nature, vol. 541(7635), pages 68-71, January.
    2. Han Wang & Chunlin Chen & Yexin Zhang & Lixia Peng & Song Ma & Teng Yang & Huaihong Guo & Zhidong Zhang & Dang Sheng Su & Jian Zhang, 2015. "In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    3. Vassil Skumryev & Stoyan Stoyanov & Yong Zhang & George Hadjipanayis & Dominique Givord & Josep Nogués, 2003. "Beating the superparamagnetic limit with exchange bias," Nature, Nature, vol. 423(6942), pages 850-853, June.
    4. Arno Bergmann & Elias Martinez-Moreno & Detre Teschner & Petko Chernev & Manuel Gliech & Jorge Ferreira de Araújo & Tobias Reier & Holger Dau & Peter Strasser, 2015. "Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix T. Haase & Arno Bergmann & Travis E. Jones & Janis Timoshenko & Antonia Herzog & Hyo Sang Jeon & Clara Rettenmaier & Beatriz Roldan Cuenya, 2022. "Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction," Nature Energy, Nature, vol. 7(8), pages 765-773, August.
    2. Jinqi Xiong & Shanjun Mao & Qian Luo & Honghui Ning & Bing Lu & Yanling Liu & Yong Wang, 2024. "Mediating trade-off between activity and selectivity in alkynes semi-hydrogenation via a hydrophilic polar layer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Bo Cai & Lu Zhou & Pei-Yan Zhao & Hua-Long Peng & Zhi-Ling Hou & Pengfei Hu & Li-Min Liu & Guang-Sheng Wang, 2024. "Interface-induced dual-pinning mechanism enhances low-frequency electromagnetic wave loss," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Shangheng Liu & Shize Geng & Ling Li & Ying Zhang & Guomian Ren & Bolong Huang & Zhiwei Hu & Jyh-Fu Lee & Yu-Hong Lai & Ying-Hao Chu & Yong Xu & Qi Shao & Xiaoqing Huang, 2022. "A top-down strategy for amorphization of hydroxyl compounds for electrocatalytic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Chengsheng Yang & Sicong Ma & Yongmei Liu & Lihua Wang & Desheng Yuan & Wei-Peng Shao & Lunjia Zhang & Fan Yang & Tiejun Lin & Hongxin Ding & Heyong He & Zhi-Pan Liu & Yong Cao & Yifeng Zhu & Xinhe Ba, 2024. "Homolytic H2 dissociation for enhanced hydrogenation catalysis on oxides," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Zhenglong Fan & Fan Liao & Yujin Ji & Yang Liu & Hui Huang & Dan Wang & Kui Yin & Haiwei Yang & Mengjie Ma & Wenxiang Zhu & Meng Wang & Zhenhui Kang & Youyong Li & Mingwang Shao & Zhiwei Hu & Qi Shao, 2022. "Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Zhi Wen Chen & Jian Li & Pengfei Ou & Jianan Erick Huang & Zi Wen & LiXin Chen & Xue Yao & GuangMing Cai & Chun Cheng Yang & Chandra Veer Singh & Qing Jiang, 2024. "Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Yang, Gaoqiang & Mo, Jingke & Kang, Zhenye & Dohrmann, Yeshi & List, Frederick A. & Green, Johney B. & Babu, Sudarsanam S. & Zhang, Feng-Yuan, 2018. "Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting," Applied Energy, Elsevier, vol. 215(C), pages 202-210.
    9. Qiaoxi Liu & Wenjie Xu & Hao Huang & Hongwei Shou & Jingxiang Low & Yitao Dai & Wanbing Gong & Youyou Li & Delong Duan & Wenqing Zhang & Yawen Jiang & Guikai Zhang & Dengfeng Cao & Kecheng Wei & Ran L, 2024. "Spectroscopic visualization of reversible hydrogen spillover between palladium and metal–organic frameworks toward catalytic semihydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Earl Matthew Davis & Arno Bergmann & Chao Zhan & Helmut Kuhlenbeck & Beatriz Roldan Cuenya, 2023. "Comparative study of Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film electrocatalysts for the oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Sihong Wang & Qu Jiang & Shenghong Ju & Chia-Shuo Hsu & Hao Ming Chen & Di Zhang & Fang Song, 2022. "Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Yubo Chen & Joon Kyo Seo & Yuanmiao Sun & Thomas A. Wynn & Marco Olguin & Minghao Zhang & Jingxian Wang & Shibo Xi & Yonghua Du & Kaidi Yuan & Wei Chen & Adrian C. Fisher & Maoyu Wang & Zhenxing Feng , 2022. "Enhanced oxygen evolution over dual corner-shared cobalt tetrahedra," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Mingwu Tan & Yanling Yang & Ying Yang & Jiali Chen & Zhaoxia Zhang & Gang Fu & Jingdong Lin & Shaolong Wan & Shuai Wang & Yong Wang, 2022. "Hydrogen spillover assisted by oxygenate molecules over nonreducible oxides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Zhang, J. & He, L. & Yao, Y. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Zhou, D.W., 2020. "Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2," Renewable Energy, Elsevier, vol. 154(C), pages 1229-1239.
    15. Dong Liu & Tao Ding & Lifeng Wang & Huijuan Zhang & Li Xu & Beibei Pang & Xiaokang Liu & Huijuan Wang & Junhui Wang & Kaifeng Wu & Tao Yao, 2023. "In situ constructing atomic interface in ruthenium-based amorphous hybrid-structure towards solar hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Zhida Gu & Mengke Li & Cheng Chen & Xinglong Zhang & Chengyang Luo & Yutao Yin & Ruifa Su & Suoying Zhang & Yu Shen & Yu Fu & Weina Zhang & Fengwei Huo, 2023. "Water-assisted hydrogen spillover in Pt nanoparticle-based metal–organic framework composites," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35846-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.