IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06269-z.html
   My bibliography  Save this article

Hydrogen spillover through Matryoshka-type (ZIFs@)n−1ZIFs nanocubes

Author

Listed:
  • Guowu Zhan

    (National University of Singapore
    Cambridge Centre for Advanced Research in Energy Efficiency in Singapore)

  • Hua Chun Zeng

    (National University of Singapore
    Cambridge Centre for Advanced Research in Energy Efficiency in Singapore)

Abstract

Hydrogen spillover phenomenon is well-documented in hydrogenation catalysis but still highly disputed in hydrogen storage. Until now, the existence of hydrogen spillover through metal–organic frameworks (MOFs) remains a topic of ongoing debate and how far the split hydrogen atoms diffuse in such materials is unknown. Herein we provide experimental evidence of the occurrence of hydrogen spillover in microporous MOFs at elevated temperatures, and the penetration depths of atomic hydrogen were measured quantitatively. We have made Matryoshka-type (ZIFs@)n−1ZIFs (where ZIFs = ZIF-8 or ZIF-67) nanocubes, together with Pt nanoparticles loaded on their external surfaces to produce atomic hydrogen. Within the (ZIFs@)n−1ZIFs, the ZIF-8 shell served as a ruler to measure the travelling distance of H atoms while the ZIF-67 core as a terminator of H atoms. In addition to the hydrogenolysis at normal pressure, CO2 hydrogenation can also trace the migration of H atoms over the ZIF-8 at high pressure.

Suggested Citation

  • Guowu Zhan & Hua Chun Zeng, 2018. "Hydrogen spillover through Matryoshka-type (ZIFs@)n−1ZIFs nanocubes," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06269-z
    DOI: 10.1038/s41467-018-06269-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06269-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06269-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiaoxi Liu & Wenjie Xu & Hao Huang & Hongwei Shou & Jingxiang Low & Yitao Dai & Wanbing Gong & Youyou Li & Delong Duan & Wenqing Zhang & Yawen Jiang & Guikai Zhang & Dengfeng Cao & Kecheng Wei & Ran L, 2024. "Spectroscopic visualization of reversible hydrogen spillover between palladium and metal–organic frameworks toward catalytic semihydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Xiao-Jue Bai & Caoyu Yang & Zhiyong Tang, 2024. "Enabling long-distance hydrogen spillover in nonreducible metal-organic frameworks for catalytic reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Shenghui Zhou & Wenrui Ma & Uzma Anjum & Mohammadreza Kosari & Shibo Xi & Sergey M. Kozlov & Hua Chun Zeng, 2023. "Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Zhida Gu & Mengke Li & Cheng Chen & Xinglong Zhang & Chengyang Luo & Yutao Yin & Ruifa Su & Suoying Zhang & Yu Shen & Yu Fu & Weina Zhang & Fengwei Huo, 2023. "Water-assisted hydrogen spillover in Pt nanoparticle-based metal–organic framework composites," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06269-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.