IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40611-4.html
   My bibliography  Save this article

Whole genome deconvolution unveils Alzheimer’s resilient epigenetic signature

Author

Listed:
  • Eloise Berson

    (Stanford University
    Stanford University
    Stanford University)

  • Anjali Sreenivas

    (Stanford University
    Stanford University)

  • Thanaphong Phongpreecha

    (Stanford University
    Stanford University
    Stanford University)

  • Amalia Perna

    (Stanford University)

  • Fiorella C. Grandi

    (Gladstone Institute of Neurological Disease
    Gladstone Institute of Data Science and Biotechnology
    University of California San Francisco)

  • Lei Xue

    (Stanford University
    Stanford University
    Stanford University)

  • Neal G. Ravindra

    (Stanford University
    Stanford University
    Stanford University)

  • Neelufar Payrovnaziri

    (Stanford University
    Stanford University
    Stanford University)

  • Samson Mataraso

    (Stanford University
    Stanford University
    Stanford University)

  • Yeasul Kim

    (Stanford University
    Stanford University
    Stanford University)

  • Camilo Espinosa

    (Stanford University
    Stanford University
    Stanford University)

  • Alan L. Chang

    (Stanford University
    Stanford University
    Stanford University)

  • Martin Becker

    (Stanford University
    Stanford University
    Stanford University)

  • Kathleen S. Montine

    (Stanford University)

  • Edward J. Fox

    (Stanford University)

  • Howard Y. Chang

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • M. Ryan Corces

    (Gladstone Institute of Neurological Disease
    Gladstone Institute of Data Science and Biotechnology
    University of California San Francisco)

  • Nima Aghaeepour

    (Stanford University
    Stanford University
    Stanford University)

  • Thomas J. Montine

    (Stanford University)

Abstract

Assay for Transposase Accessible Chromatin by sequencing (ATAC-seq) accurately depicts the chromatin regulatory state and altered mechanisms guiding gene expression in disease. However, bulk sequencing entangles information from different cell types and obscures cellular heterogeneity. To address this, we developed Cellformer, a deep learning method that deconvolutes bulk ATAC-seq into cell type-specific expression across the whole genome. Cellformer enables cost-effective cell type-specific open chromatin profiling in large cohorts. Applied to 191 bulk samples from 3 brain regions, Cellformer identifies cell type-specific gene regulatory mechanisms involved in resilience to Alzheimer’s disease, an uncommon group of cognitively healthy individuals that harbor a high pathological load of Alzheimer’s disease. Cell type-resolved chromatin profiling unveils cell type-specific pathways and nominates potential epigenetic mediators underlying resilience that may illuminate therapeutic opportunities to limit the cognitive impact of the disease. Cellformer is freely available to facilitate future investigations using high-throughput bulk ATAC-seq data.

Suggested Citation

  • Eloise Berson & Anjali Sreenivas & Thanaphong Phongpreecha & Amalia Perna & Fiorella C. Grandi & Lei Xue & Neal G. Ravindra & Neelufar Payrovnaziri & Samson Mataraso & Yeasul Kim & Camilo Espinosa & A, 2023. "Whole genome deconvolution unveils Alzheimer’s resilient epigenetic signature," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40611-4
    DOI: 10.1038/s41467-023-40611-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40611-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40611-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Avantika Lal & Zachary D. Chiang & Nikolai Yakovenko & Fabiana M. Duarte & Johnny Israeli & Jason D. Buenrostro, 2021. "Deep learning-based enhancement of epigenomics data with AtacWorks," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Jordan W. Squair & Matthieu Gautier & Claudia Kathe & Mark A. Anderson & Nicholas D. James & Thomas H. Hutson & Rémi Hudelle & Taha Qaiser & Kaya J. E. Matson & Quentin Barraud & Ariel J. Levine & Gio, 2021. "Confronting false discoveries in single-cell differential expression," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Peng Qiu, 2020. "Embracing the dropouts in single-cell RNA-seq analysis," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Francisco Avila Cobos & José Alquicira-Hernandez & Joseph E. Powell & Pieter Mestdagh & Katleen De Preter, 2020. "Benchmarking of cell type deconvolution pipelines for transcriptomics data," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    5. Jie Liao & Jingyang Qian & Yin Fang & Zhuo Chen & Xiang Zhuang & Ningyu Zhang & Xin Shao & Yining Hu & Penghui Yang & Junyun Cheng & Yang Hu & Lingqi Yu & Haihong Yang & Jinlu Zhang & Xiaoyan Lu & Li , 2022. "De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Gloriia Novikova & Manav Kapoor & Julia TCW & Edsel M. Abud & Anastasia G. Efthymiou & Steven X. Chen & Haoxiang Cheng & John F. Fullard & Jaroslav Bendl & Yiyuan Liu & Panos Roussos & Johan LM Björke, 2021. "Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    7. Francesco Vallania & Andrew Tam & Shane Lofgren & Steven Schaffert & Tej D. Azad & Erika Bongen & Winston Haynes & Meia Alsup & Michael Alonso & Mark Davis & Edgar Engleman & Purvesh Khatri, 2018. "Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    8. Zhijian Li & Christoph Kuppe & Susanne Ziegler & Mingbo Cheng & Nazanin Kabgani & Sylvia Menzel & Martin Zenke & Rafael Kramann & Ivan G. Costa, 2021. "Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Francisco Avila Cobos & José Alquicira-Hernandez & Joseph E. Powell & Pieter Mestdagh & Katleen Preter, 2020. "Author Correction: Benchmarking of cell type deconvolution pipelines for transcriptomics data," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yann Vanrobaeys & Zeru J. Peterson & Emily. N. Walsh & Snehajyoti Chatterjee & Li-Chun Lin & Lisa C. Lyons & Thomas Nickl-Jockschat & Ted Abel, 2023. "Spatial transcriptomics reveals unique gene expression changes in different brain regions after sleep deprivation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Samir Rachid Zaim & Mark-Phillip Pebworth & Imran McGrath & Lauren Okada & Morgan Weiss & Julian Reading & Julie L. Czartoski & Troy R. Torgerson & M. Juliana McElrath & Thomas F. Bumol & Peter J. Ske, 2024. "MOCHA’s advanced statistical modeling of scATAC-seq data enables functional genomic inference in large human cohorts," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    3. Gavin J. Sutton & Daniel Poppe & Rebecca K. Simmons & Kieran Walsh & Urwah Nawaz & Ryan Lister & Johann A. Gagnon-Bartsch & Irina Voineagu, 2022. "Comprehensive evaluation of deconvolution methods for human brain gene expression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Daniel Charytonowicz & Rachel Brody & Robert Sebra, 2023. "Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Kobe Ridder & Huiwen Che & Kaat Leroy & Bernard Thienpont, 2024. "Benchmarking of methods for DNA methylome deconvolution," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Adrian B. Levine & Liana Nobre & Anirban Das & Scott Milos & Vanessa Bianchi & Monique Johnson & Nicholas R. Fernandez & Lucie Stengs & Scott Ryall & Michelle Ku & Mansuba Rana & Benjamin Laxer & Java, 2024. "Immuno-oncologic profiling of pediatric brain tumors reveals major clinical significance of the tumor immune microenvironment," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Kang Wang & Ioannis Zerdes & Henrik J. Johansson & Dhifaf Sarhan & Yizhe Sun & Dimitris C. Kanellis & Emmanouil G. Sifakis & Artur Mezheyeuski & Xingrong Liu & Niklas Loman & Ingrid Hedenfalk & Jonas , 2024. "Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    9. Khoa A. Tran & Venkateswar Addala & Rebecca L. Johnston & David Lovell & Andrew Bradley & Lambros T. Koufariotis & Scott Wood & Sunny Z. Wu & Daniel Roden & Ghamdan Al-Eryani & Alexander Swarbrick & E, 2023. "Performance of tumour microenvironment deconvolution methods in breast cancer using single-cell simulated bulk mixtures," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Hyun Kim & Won Chang & Seok Joo Chae & Jong-Eun Park & Minseok Seo & Jae Kyoung Kim, 2024. "scLENS: data-driven signal detection for unbiased scRNA-seq data analysis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Xiaoyu Song & Jiayi Ji & Joseph H. Rothstein & Stacey E. Alexeeff & Lori C. Sakoda & Adriana Sistig & Ninah Achacoso & Eric Jorgenson & Alice S. Whittemore & Robert J. Klein & Laurel A. Habel & Pei Wa, 2023. "MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Guillermo Serrano & Nerea Berastegui & Aintzane Díaz-Mazkiaran & Paula García-Olloqui & Carmen Rodriguez-Res & Sofia Huerga-Dominguez & Marina Ainciburu & Amaia Vilas-Zornoza & Patxi San Martin-Uriz &, 2024. "Single-cell transcriptional profile of CD34+ hematopoietic progenitor cells from del(5q) myelodysplastic syndromes and impact of lenalidomide," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Zhiyuan Luo & Jiacheng Zhang & Jingyi Fei & Shengdong Ke, 2022. "Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    15. Özkan İş & Xue Wang & Joseph S. Reddy & Yuhao Min & Elanur Yilmaz & Prabesh Bhattarai & Tulsi Patel & Jeremiah Bergman & Zachary Quicksall & Michael G. Heckman & Frederick Q. Tutor-New & Birsen Can De, 2024. "Gliovascular transcriptional perturbations in Alzheimer’s disease reveal molecular mechanisms of blood brain barrier dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    16. Jozsef Karman & Jing Wang & Corneliu Bodea & Sherry Cao & Marc C Levesque, 2021. "Lung gene expression and single cell analyses reveal two subsets of idiopathic pulmonary fibrosis (IPF) patients associated with different pathogenic mechanisms," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-28, March.
    17. Mary-Ellen Lynall & Blagoje Soskic & James Hayhurst & Jeremy Schwartzentruber & Daniel F. Levey & Gita A. Pathak & Renato Polimanti & Joel Gelernter & Murray B. Stein & Gosia Trynka & Menna R. Clatwor, 2022. "Genetic variants associated with psychiatric disorders are enriched at epigenetically active sites in lymphoid cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Raymond Hall Yip Louie & Curtis Cai & Jerome Samir & Mandeep Singh & Ira W. Deveson & James M. Ferguson & Timothy G. Amos & Helen Marie McGuire & Kavitha Gowrishankar & Thiruni Adikari & Robert Balder, 2023. "CAR+ and CAR− T cells share a differentiation trajectory into an NK-like subset after CD19 CAR T cell infusion in patients with B cell malignancies," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Yichuan Cao & Xiamiao Zhao & Songming Tang & Qun Jiang & Sijie Li & Siyu Li & Shengquan Chen, 2024. "scButterfly: a versatile single-cell cross-modality translation method via dual-aligned variational autoencoders," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Songming Tang & Xuejian Cui & Rongxiang Wang & Sijie Li & Siyu Li & Xin Huang & Shengquan Chen, 2024. "scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40611-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.