IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40601-6.html
   My bibliography  Save this article

Emergent increase in coral thermal tolerance reduces mass bleaching under climate change

Author

Listed:
  • Liam Lachs

    (Newcastle University
    University of British Columbia)

  • Simon D. Donner

    (University of British Columbia)

  • Peter J. Mumby

    (The University of Queensland
    Palau International Coral Reef Center)

  • John C. Bythell

    (Newcastle University)

  • Adriana Humanes

    (Newcastle University)

  • Holly K. East

    (Northumbria University)

  • James R. Guest

    (Newcastle University)

Abstract

Recurrent mass bleaching events threaten the future of coral reefs. To persist under climate change, corals will need to endure progressively more intense and frequent marine heatwaves, yet it remains unknown whether their thermal tolerance can keep pace with warming. Here, we reveal an emergent increase in the thermal tolerance of coral assemblages at a rate of 0.1 °C/decade for a remote Pacific coral reef system. This led to less severe bleaching impacts than would have been predicted otherwise, indicating adaptation, acclimatisation or shifts in community structure. Using future climate projections, we show that if thermal tolerance continues to rise over the coming century at the most-likely historic rate, substantial reductions in bleaching trajectories are possible. High-frequency bleaching can be fully mitigated at some reefs under low-to-middle emissions scenarios, yet can only be delayed under high emissions scenarios. Collectively, our results indicate a potential ecological resilience to climate change, but still highlight the need for reducing carbon emissions in line with Paris Agreement commitments to preserve coral reefs.

Suggested Citation

  • Liam Lachs & Simon D. Donner & Peter J. Mumby & John C. Bythell & Adriana Humanes & Holly K. East & James R. Guest, 2023. "Emergent increase in coral thermal tolerance reduces mass bleaching under climate change," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40601-6
    DOI: 10.1038/s41467-023-40601-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40601-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40601-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Terry P. Hughes & James T. Kerry & Mariana Álvarez-Noriega & Jorge G. Álvarez-Romero & Kristen D. Anderson & Andrew H. Baird & Russell C. Babcock & Maria Beger & David R. Bellwood & Ray Berkelmans & T, 2017. "Global warming and recurrent mass bleaching of corals," Nature, Nature, vol. 543(7645), pages 373-377, March.
    2. S. Sully & D. E. Burkepile & M. K. Donovan & G. Hodgson & R. van Woesik, 2019. "A global analysis of coral bleaching over the past two decades," Nature Communications, Nature, vol. 10(1), pages 1-5, December.
    3. Aryan Safaie & Nyssa J. Silbiger & Timothy R. McClanahan & Geno Pawlak & Daniel J. Barshis & James L. Hench & Justin S. Rogers & Gareth J. Williams & Kristen A. Davis, 2018. "High frequency temperature variability reduces the risk of coral bleaching," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    4. Cheryl A. Logan & John P. Dunne & James S. Ryan & Marissa L. Baskett & Simon D. Donner, 2021. "Quantifying global potential for coral evolutionary response to climate change," Nature Climate Change, Nature, vol. 11(6), pages 537-542, June.
    5. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    6. Dan A. Smale & Thomas Wernberg & Eric C. J. Oliver & Mads Thomsen & Ben P. Harvey & Sandra C. Straub & Michael T. Burrows & Lisa V. Alexander & Jessica A. Benthuysen & Markus G. Donat & Ming Feng & Al, 2019. "Marine heatwaves threaten global biodiversity and the provision of ecosystem services," Nature Climate Change, Nature, vol. 9(4), pages 306-312, April.
    7. Simon D Donner & Gregory J M Rickbeil & Scott F Heron, 2017. "A new, high-resolution global mass coral bleaching database," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    8. Aryan Safaie & Nyssa J. Silbiger & Timothy R. McClanahan & Geno Pawlak & Daniel J. Barshis & James L. Hench & Justin S. Rogers & Gareth J. Williams & Kristen A. Davis, 2018. "Author Correction: High frequency temperature variability reduces the risk of coral bleaching," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kathryn E. Smith & Margot Aubin & Michael T. Burrows & Karen Filbee-Dexter & Alistair J. Hobday & Neil J. Holbrook & Nathan G. King & Pippa J. Moore & Alex Sen Gupta & Mads Thomsen & Thomas Wernberg &, 2024. "Global impacts of marine heatwaves on coastal foundation species," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex S. J. Wyatt & James J. Leichter & Libe Washburn & Li Kui & Peter J. Edmunds & Scott C. Burgess, 2023. "Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. K. M. Quigley & M. J. H. Oppen, 2022. "Predictive models for the selection of thermally tolerant corals based on offspring survival," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Shannon G. Klein & Cassandra Roch & Carlos M. Duarte, 2024. "Systematic review of the uncertainty of coral reef futures under climate change," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Nan Hu & Paul E. Bourdeau & Johan Hollander, 2024. "Responses of marine trophic levels to the combined effects of ocean acidification and warming," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Thomas W. Davies & Oren Levy & Svenja Tidau & Laura Fernandes Barros Marangoni & Joerg Wiedenmann & Cecilia D’Angelo & Tim Smyth, 2023. "Global disruption of coral broadcast spawning associated with artificial light at night," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Eric J. Armstrong & Julie Lê-Hoang & Quentin Carradec & Jean-Marc Aury & Benjamin Noel & Benjamin C. C. Hume & Christian R. Voolstra & Julie Poulain & Caroline Belser & David A. Paz-García & Corinne C, 2023. "Host transcriptomic plasticity and photosymbiotic fidelity underpin Pocillopora acclimatization across thermal regimes in the Pacific Ocean," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Jun Ge & Qi Liu & Beilei Zan & Zhiqiang Lin & Sha Lu & Bo Qiu & Weidong Guo, 2022. "Deforestation intensifies daily temperature variability in the northern extratropics," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Lewis A. Jones & Philip D. Mannion & Alexander Farnsworth & Fran Bragg & Daniel J. Lunt, 2022. "Climatic and tectonic drivers shaped the tropical distribution of coral reefs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    11. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    12. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    13. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    14. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    15. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    16. Vanhatalo, Jarno & Veneranta, Lari & Hudd, Richard, 2012. "Species distribution modeling with Gaussian processes: A case study with the youngest stages of sea spawning whitefish (Coregonus lavaretus L. s.l.) larvae," Ecological Modelling, Elsevier, vol. 228(C), pages 49-58.
    17. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    18. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    19. Jonathan Rougier & Andrew Zammit-Mangion, 2016. "Visualization for Large-scale Gaussian Updates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1153-1161, December.
    20. Marcelo Cunha & Dani Gamerman & Montserrat Fuentes & Marina Paez, 2017. "A non-stationary spatial model for temperature interpolation applied to the state of Rio de Janeiro," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 919-939, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40601-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.