IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09238-2.html
   My bibliography  Save this article

A global analysis of coral bleaching over the past two decades

Author

Listed:
  • S. Sully

    (150 West University Blvd.)

  • D. E. Burkepile

    (University of California
    University of California)

  • M. K. Donovan

    (University of California)

  • G. Hodgson

    (Reef Check Foundation 13723 Fiji Way)

  • R. van Woesik

    (150 West University Blvd.)

Abstract

Thermal-stress events associated with climate change cause coral bleaching and mortality that threatens coral reefs globally. Yet coral bleaching patterns vary spatially and temporally. Here we synthesize field observations of coral bleaching at 3351 sites in 81 countries from 1998 to 2017 and use a suite of environmental covariates and temperature metrics to analyze bleaching patterns. Coral bleaching was most common in localities experiencing high intensity and high frequency thermal-stress anomalies. However, coral bleaching was significantly less common in localities with a high variance in sea-surface temperature (SST) anomalies. Geographically, the highest probability of coral bleaching occurred at tropical mid-latitude sites (15–20 degrees north and south of the Equator), despite similar thermal stress levels at equatorial sites. In the last decade, the onset of coral bleaching has occurred at significantly higher SSTs (∼0.5 °C) than in the previous decade, suggesting that thermally susceptible genotypes may have declined and/or adapted such that the remaining coral populations now have a higher thermal threshold for bleaching.

Suggested Citation

  • S. Sully & D. E. Burkepile & M. K. Donovan & G. Hodgson & R. van Woesik, 2019. "A global analysis of coral bleaching over the past two decades," Nature Communications, Nature, vol. 10(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09238-2
    DOI: 10.1038/s41467-019-09238-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09238-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09238-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathalie Hilmi & Ritu Basu & Matías Crisóstomo & Lara Lebleu & Joachim Claudet & Davide Seveso, 2023. "The pressures and opportunities for coral reef preservation and restoration in the Maldives," Post-Print hal-04033524, HAL.
    2. Alice Rouan & Melanie Pousse & Nadir Djerbi & Barbara Porro & Guillaume Bourdin & Quentin Carradec & Benjamin CC. Hume & Julie Poulain & Julie Lê-Hoang & Eric Armstrong & Sylvain Agostini & Guillem Sa, 2023. "Telomere DNA length regulation is influenced by seasonal temperature differences in short-lived but not in long-lived reef-building corals," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Antonio Mileti & Daniele Arduini & Gordon Watson & Adriana Giangrande, 2022. "Blockchain Traceability in Trading Biomasses Obtained with an Integrated Multi-Trophic Aquaculture," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    4. Nan Hu & Paul E. Bourdeau & Johan Hollander, 2024. "Responses of marine trophic levels to the combined effects of ocean acidification and warming," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Adriana Humanes & Liam Lachs & Elizabeth Beauchamp & Leah Bukurou & Daisy Buzzoni & John Bythell & Jamie R. K. Craggs & Ruben Torre Cerro & Alasdair J. Edwards & Yimnang Golbuu & Helios M. Martinez & , 2024. "Selective breeding enhances coral heat tolerance to marine heatwaves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Alex S. J. Wyatt & James J. Leichter & Libe Washburn & Li Kui & Peter J. Edmunds & Scott C. Burgess, 2023. "Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. K. M. Quigley & M. J. H. Oppen, 2022. "Predictive models for the selection of thermally tolerant corals based on offspring survival," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Carlo Fezzi & Mauro Derek J. Ford & Kirsten L.L. Oleson, 2022. "The economic value of coral reefs: climate change impacts and spatial targeting of restoration measures," DEM Working Papers 2022/5, Department of Economics and Management.
    9. Liam Lachs & Simon D. Donner & Peter J. Mumby & John C. Bythell & Adriana Humanes & Holly K. East & James R. Guest, 2023. "Emergent increase in coral thermal tolerance reduces mass bleaching under climate change," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Lewis A. Jones & Philip D. Mannion & Alexander Farnsworth & Fran Bragg & Daniel J. Lunt, 2022. "Climatic and tectonic drivers shaped the tropical distribution of coral reefs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Thomas W. Davies & Oren Levy & Svenja Tidau & Laura Fernandes Barros Marangoni & Joerg Wiedenmann & Cecilia D’Angelo & Tim Smyth, 2023. "Global disruption of coral broadcast spawning associated with artificial light at night," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Laura Baldassarre & Hua Ying & Adam M. Reitzel & Sören Franzenburg & Sebastian Fraune, 2022. "Microbiota mediated plasticity promotes thermal adaptation in the sea anemone Nematostella vectensis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Fezzi, Carlo & Ford, Derek J. & Oleson, Kirsten L.L., 2023. "The economic value of coral reefs: Climate change impacts and spatial targeting of restoration measures," Ecological Economics, Elsevier, vol. 203(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09238-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.