IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40583-5.html
   My bibliography  Save this article

Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing

Author

Listed:
  • Caicong Li

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Jianxiang Cheng

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Yunfeng He

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Xiangnan He

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Ziyi Xu

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Qi Ge

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Canhui Yang

    (Southern University of Science and Technology
    Southern University of Science and Technology)

Abstract

Stretchable ionotronics have drawn increasing attention during the past decade, enabling myriad applications in engineering and biomedicine. However, existing ionotronic sensors suffer from limited sensing capabilities due to simple device structures and poor stability due to the leakage of ingredients. In this study, we rationally design and fabricate a plethora of architected leakage-free ionotronic sensors with multi-mode sensing capabilities, using DLP-based 3D printing and a polyelectrolyte elastomer. We synthesize a photo-polymerizable ionic monomer for the polyelectrolyte elastomer, which is stretchable, transparent, ionically conductive, thermally stable, and leakage-resistant. The printed sensors possess robust interfaces and extraordinary long-term stability. The multi-material 3D printing allows high flexibility in structural design, enabling the sensing of tension, compression, shear, and torsion, with on-demand tailorable sensitivities through elaborate programming of device architectures. Furthermore, we fabricate integrated ionotronic sensors that can perceive different mechanical stimuli simultaneously without mutual signal interferences. We demonstrate a sensing kit consisting of four shear sensors and one compressive sensor, and connect it to a remote-control system that is programmed to wirelessly control the flight of a drone. Multi-material 3D printing of leakage-free polyelectrolyte elastomers paves new avenues for manufacturing stretchable ionotronics by resolving the deficiencies of stability and functionalities simultaneously.

Suggested Citation

  • Caicong Li & Jianxiang Cheng & Yunfeng He & Xiangnan He & Ziyi Xu & Qi Ge & Canhui Yang, 2023. "Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40583-5
    DOI: 10.1038/s41467-023-40583-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40583-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40583-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Zhang & Baohu Wu & Shengtong Sun & Peiyi Wu, 2021. "Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Ryan L. Truby & Jennifer A. Lewis, 2016. "Printing soft matter in three dimensions," Nature, Nature, vol. 540(7633), pages 371-378, December.
    3. Lei Shi & Tianxiang Zhu & Guoxin Gao & Xinyu Zhang & Wei Wei & Wenfeng Liu & Shujiang Ding, 2018. "Highly stretchable and transparent ionic conducting elastomers," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    4. Jianxiang Cheng & Rong Wang & Zechu Sun & Qingjiang Liu & Xiangnan He & Honggeng Li & Haitao Ye & Xingxin Yang & Xinfeng Wei & Zhenqing Li & Bingcong Jian & Weiwei Deng & Qi Ge, 2022. "Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangnan He & Biao Zhang & Qingjiang Liu & Hao Chen & Jianxiang Cheng & Bingcong Jian & Hanlin Yin & Honggeng Li & Ke Duan & Jianwei Zhang & Qi Ge, 2024. "Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jing Chen & Yiyang Gao & Lei Shi & Wei Yu & Zongjie Sun & Yifan Zhou & Shuang Liu & Heng Mao & Dongyang Zhang & Tongqing Lu & Quan Chen & Demei Yu & Shujiang Ding, 2022. "Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Xiansheng Zhang & Hongwei Yan & Chongzhi Xu & Xia Dong & Yu Wang & Aiping Fu & Hao Li & Jin Yong Lee & Sheng Zhang & Jiahua Ni & Min Gao & Jing Wang & Jinpeng Yu & Shuzhi Sam Ge & Ming Liang Jin & Lil, 2023. "Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Kyle C. H. Chin & Grant Ovsepyan & Andrew J. Boydston, 2024. "Multi-color dual wavelength vat photopolymerization 3D printing via spatially controlled acidity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Shixiang Zhou & Yijing Zhao & Kaixi Zhang & Yanran Xun & Xueyu Tao & Wentao Yan & Wei Zhai & Jun Ding, 2024. "Impact-resistant supercapacitor by hydrogel-infused lattice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Jun Zhang & Wenxiang Wang & Yan Zhang & Qiang Wei & Fei Han & Shengyi Dong & Dongqing Liu & Shiguo Zhang, 2022. "Small-molecule ionic liquid-based adhesive with strong room-temperature adhesion promoted by electrostatic interaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Jinjian Huang & Rong Yang & Jiao Jiao & Ze Li & Penghui Wang & Ye Liu & Sicheng Li & Canwen Chen & Zongan Li & Guiwen Qu & Kang Chen & Xiuwen Wu & Bo Chi & Jianan Ren, 2023. "A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Elvis K. Boahen & Baohai Pan & Hyukmin Kweon & Joo Sung Kim & Hanbin Choi & Zhengyang Kong & Dong Jun Kim & Jin Zhu & Wu Bin Ying & Kyung Jin Lee & Do Hwan Kim, 2022. "Ultrafast, autonomous self-healable iontronic skin exhibiting piezo-ionic dynamics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Minju Song & Yoonkyum Kim & Du San Baek & Ho Young Kim & Da Hwi Gu & Haiyang Li & Benjamin V. Cunning & Seong Eun Yang & Seung Hwae Heo & Seunghyun Lee & Minhyuk Kim & June Sung Lim & Hu Young Jeong &, 2023. "3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Minho Seong & Kahyun Sun & Somi Kim & Hyukjoo Kwon & Sang-Woo Lee & Sarath Chandra Veerla & Dong Kwan Kang & Jaeil Kim & Stalin Kondaveeti & Salah M. Tawfik & Hyung Wook Park & Hoon Eui Jeong, 2024. "Multifunctional Magnetic Muscles for Soft Robotics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Rasool Nasseri & Negin Bouzari & Junting Huang & Hossein Golzar & Sarah Jankhani & Xiaowu (Shirley) Tang & Tizazu H. Mekonnen & Amirreza Aghakhani & Hamed Shahsavan, 2023. "Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Mahdi Derayatifar & Mohsen Habibi & Rama Bhat & Muthukumaran Packirisamy, 2024. "Holographic direct sound printing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Rong Wang & Chao Yuan & Jianxiang Cheng & Xiangnan He & Haitao Ye & Bingcong Jian & Honggeng Li & Jiaming Bai & Qi Ge, 2024. "Direct 4D printing of ceramics driven by hydrogel dehydration," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Wenke Xie & Qian Tang & Jinlong Xie & Yang Fei & Hujie Wan & Tao Zhao & Tianpeng Ding & Xu Xiao & Qiye Wen, 2024. "Organohydrogel-based transparent terahertz absorber via ionic conduction loss," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. FuYao Sun & LongFei Liu & Tong Liu & XueBin Wang & Qi Qi & ZuSheng Hang & Kai Chen & JianHua Xu & JiaJun Fu, 2023. "Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Yu Zhang & Lidian Zhang & Chengqi Zhang & Jingxia Wang & Junchao Liu & Changqing Ye & Zhichao Dong & Lei Wu & Yanlin Song, 2022. "Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Dongliang Fan & Xi Yuan & Wenyu Wu & Renjie Zhu & Xin Yang & Yuxuan Liao & Yunteng Ma & Chufan Xiao & Cheng Chen & Changyue Liu & Hongqiang Wang & Peiwu Qin, 2022. "Self-shrinking soft demoulding for complex high-aspect-ratio microchannels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Wenqian He & Meilin Wang & Guangkai Mei & Shiyong Liu & Abdul Qadeer Khan & Chao Li & Danyang Feng & Zihao Su & Lili Bao & Ge Wang & Enzhao Liu & Yutian Zhu & Jie Bai & Meifang Zhu & Xiang Zhou & Zunf, 2024. "Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40583-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.