IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v536y2016i7615d10.1038_nature19058.html
   My bibliography  Save this article

A trans-synaptic nanocolumn aligns neurotransmitter release to receptors

Author

Listed:
  • Ai-Hui Tang

    (University of Maryland School of Medicine
    Program in Neuroscience, University of Maryland School of Medicine)

  • Haiwen Chen

    (University of Maryland School of Medicine
    Program in Neuroscience, University of Maryland School of Medicine
    Medical Scientist Training Program, University of Maryland School of Medicine)

  • Tuo P. Li

    (University of Maryland School of Medicine
    Program in Neuroscience, University of Maryland School of Medicine
    Medical Scientist Training Program, University of Maryland School of Medicine)

  • Sarah R. Metzbower

    (University of Maryland School of Medicine
    Program in Neuroscience, University of Maryland School of Medicine)

  • Harold D. MacGillavry

    (Cell Biology, Faculty of Science, Utrecht University)

  • Thomas A. Blanpied

    (University of Maryland School of Medicine
    Program in Neuroscience, University of Maryland School of Medicine)

Abstract

Synaptic vesicle fusion, as evoked by action potentials, is confined to presynaptic protein nanoclusters, which are closely aligned with concentrated postsynaptic receptors and their scaffolding proteins—an organization termed a ‘nanocolumn’.

Suggested Citation

  • Ai-Hui Tang & Haiwen Chen & Tuo P. Li & Sarah R. Metzbower & Harold D. MacGillavry & Thomas A. Blanpied, 2016. "A trans-synaptic nanocolumn aligns neurotransmitter release to receptors," Nature, Nature, vol. 536(7615), pages 210-214, August.
  • Handle: RePEc:nat:nature:v:536:y:2016:i:7615:d:10.1038_nature19058
    DOI: 10.1038/nature19058
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature19058
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature19058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling-Gang Wu & Chung Yu Chan, 2024. "Membrane transformations of fusion and budding," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Nicky Scheefhals & Manon Westra & Harold D. MacGillavry, 2023. "mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Wang, Xinyi & Zhang, Xiyun & Zheng, Muhua & Xu, Leijun & Xu, Kesheng, 2023. "Noise-induced coexisting firing patterns in hybrid-synaptic interacting networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    4. Aseel Shomar & Lukas Geyrhofer & Noam E Ziv & Naama Brenner, 2017. "Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-24, July.
    5. Xuchen Zhang & Pei-Yi Lin & Kif Liakath-Ali & Thomas C. Südhof, 2022. "Teneurins assemble into presynaptic nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Martin Hruska & Rachel E. Cain & Matthew B. Dalva, 2022. "Nanoscale rules governing the organization of glutamate receptors in spine synapses are subunit specific," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Reagan L. Pennock & Luke T. Coddington & Xiaohui Yan & Linda Overstreet-Wadiche & Jacques I. Wadiche, 2023. "Afferent convergence to a shared population of interneuron AMPA receptors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Philipe R. F. Mendonça & Erica Tagliatti & Helen Langley & Dimitrios Kotzadimitriou & Criseida G. Zamora-Chimal & Yulia Timofeeva & Kirill E. Volynski, 2022. "Asynchronous glutamate release is enhanced in low release efficacy synapses and dispersed across the active zone," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Susanne Prokop & Péter Ábrányi-Balogh & Benjámin Barti & Márton Vámosi & Miklós Zöldi & László Barna & Gabriella M. Urbán & András Dávid Tóth & Barna Dudok & Attila Egyed & Hui Deng & Gian Marco Leggi, 2021. "PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    10. Alessandra Sclip & Thomas C. Südhof, 2023. "Combinatorial expression of neurexins and LAR-type phosphotyrosine phosphatase receptors instructs assembly of a cerebellar circuit," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Aske L. Ejdrup & Matthew D. Lycas & Niels Lorenzen & Ainoa Konomi & Freja Herborg & Kenneth L. Madsen & Ulrik Gether, 2022. "A density-based enrichment measure for assessing colocalization in single-molecule localization microscopy data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Brian A Lloyd & Ying Han & Rebecca Roth & Bo Zhang & Jason Aoto, 2023. "Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    13. Céline D. Dürst & J. Simon Wiegert & Christian Schulze & Nordine Helassa & Katalin Török & Thomas G. Oertner, 2022. "Vesicular release probability sets the strength of individual Schaffer collateral synapses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:536:y:2016:i:7615:d:10.1038_nature19058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.