IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40354-2.html
   My bibliography  Save this article

Structural basis for a degenerate tRNA identity code and the evolution of bimodal specificity in human mitochondrial tRNA recognition

Author

Listed:
  • Bernhard Kuhle

    (The Scripps Research Institute
    University Medical Center Göttingen)

  • Marscha Hirschi

    (The Scripps Research Institute)

  • Lili K. Doerfel

    (The Scripps Research Institute)

  • Gabriel C. Lander

    (The Scripps Research Institute)

  • Paul Schimmel

    (The Scripps Research Institute
    The Scripps Florida Research Institute at the University of Florida)

Abstract

Animal mitochondrial gene expression relies on specific interactions between nuclear-encoded aminoacyl-tRNA synthetases and mitochondria-encoded tRNAs. Their evolution involves an antagonistic interplay between strong mutation pressure on mtRNAs and selection pressure to maintain their essential function. To understand the molecular consequences of this interplay, we analyze the human mitochondrial serylation system, in which one synthetase charges two highly divergent mtRNASer isoacceptors. We present the cryo-EM structure of human mSerRS in complex with mtRNASer(UGA), and perform a structural and functional comparison with the mSerRS-mtRNASer(GCU) complex. We find that despite their common function, mtRNASer(UGA) and mtRNASer(GCU) show no constrain to converge on shared structural or sequence identity motifs for recognition by mSerRS. Instead, mSerRS evolved a bimodal readout mechanism, whereby a single protein surface recognizes degenerate identity features specific to each mtRNASer. Our results show how the mutational erosion of mtRNAs drove a remarkable innovation of intermolecular specificity rules, with multiple evolutionary pathways leading to functionally equivalent outcomes.

Suggested Citation

  • Bernhard Kuhle & Marscha Hirschi & Lili K. Doerfel & Gabriel C. Lander & Paul Schimmel, 2023. "Structural basis for a degenerate tRNA identity code and the evolution of bimodal specificity in human mitochondrial tRNA recognition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40354-2
    DOI: 10.1038/s41467-023-40354-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40354-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40354-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Nicholson & Marco Salamina & Johan Panek & Karla Helena-Bueno & Charlotte R. Brown & Robert P. Hirt & Neil A. Ranson & Sergey V. Melnikov, 2022. "Adaptation to genome decay in the structure of the smallest eukaryotic ribosome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Bernhard Kuhle & Marscha Hirschi & Lili K. Doerfel & Gabriel C. Lander & Paul Schimmel, 2022. "Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Takeo Suzuki & Yuka Yashiro & Ittoku Kikuchi & Yuma Ishigami & Hironori Saito & Ikuya Matsuzawa & Shunpei Okada & Mari Mito & Shintaro Iwasaki & Ding Ma & Xuewei Zhao & Kana Asano & Huan Lin & Yohei K, 2020. "Complete chemical structures of human mitochondrial tRNAs," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    4. Bernhard Kuhle & Joseph Chihade & Paul Schimmel, 2020. "Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernhard Kuhle & Marscha Hirschi & Lili K. Doerfel & Gabriel C. Lander & Paul Schimmel, 2022. "Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Nathan Jespersen & Kai Ehrenbolger & Rahel R. Winiger & Dennis Svedberg & Charles R. Vossbrinck & Jonas Barandun, 2022. "Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Patrick C. Hoffmann & Jan Philipp Kreysing & Iskander Khusainov & Maarten W. Tuijtel & Sonja Welsch & Martin Beck, 2022. "Structures of the eukaryotic ribosome and its translational states in situ," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Paula Clemente & Javier Calvo-Garrido & Sarah F. Pearce & Florian A. Schober & Megumi Shigematsu & Stefan J. Siira & Isabelle Laine & Henrik Spåhr & Christian Steinmetzger & Katja Petzold & Yohei Kiri, 2022. "ANGEL2 phosphatase activity is required for non-canonical mitochondrial RNA processing," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Yuta Noda & Shunpei Okada & Tsutomu Suzuki, 2022. "Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Zhangli Su & Ida Monshaugen & Briana Wilson & Fengbin Wang & Arne Klungland & Rune Ougland & Anindya Dutta, 2022. "TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Annika Krüger & Cristina Remes & Dmitrii Igorevich Shiriaev & Yong Liu & Henrik Spåhr & Rolf Wibom & Ilian Atanassov & Minh Duc Nguyen & Barry S. Cooperman & Joanna Rorbach, 2023. "Human mitochondria require mtRF1 for translation termination at non-canonical stop codons," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40354-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.