IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40349-z.html
   My bibliography  Save this article

Neoadjuvant Afatinib for stage III EGFR-mutant non-small cell lung cancer: a phase II study

Author

Listed:
  • Dongliang Bian

    (Tongji University School of Medicine)

  • Liangdong Sun

    (Tongji University School of Medicine)

  • Junjie Hu

    (Tongji University School of Medicine)

  • Liang Duan

    (Tongji University School of Medicine)

  • Haoran Xia

    (Tongji University School of Medicine)

  • Xinsheng Zhu

    (Tongji University School of Medicine)

  • Fenghuan Sun

    (Tongji University School of Medicine)

  • Lele Zhang

    (Tongji University)

  • Huansha Yu

    (Tongji University School of Medicine)

  • Yicheng Xiong

    (Tongji University School of Medicine)

  • Zhida Huang

    (Tongji University School of Medicine
    Nanchang University School of Medicine)

  • Deping Zhao

    (Tongji University School of Medicine)

  • Nan Song

    (Tongji University School of Medicine)

  • Jie Yang

    (Tongji University School of Medicine)

  • Xiao Bao

    (Tongji University School of Medicine)

  • Wei Wu

    (Tongji University School of Medicine)

  • Jie Huang

    (Tongji University School of Medicine)

  • Wenxin He

    (Tongji University School of Medicine)

  • Yuming Zhu

    (Tongji University School of Medicine)

  • Gening Jiang

    (Tongji University School of Medicine)

  • Peng Zhang

    (Tongji University School of Medicine
    Wenzhou Medical University, Wenzhou
    Shihezi University School of Medicine)

Abstract

Afatinib, an irreversible ErbB-family blocker, could improve the survival of advanced epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer patients (NSCLCm+). This phase II trial (NCT04201756) aimed to assess the feasibility of neoadjuvant Afatinib treatment for stage III NSCLCm+. Forty-seven patients received neoadjuvant Afatinib treatment (40 mg daily). The primary endpoint was objective response rate (ORR). Secondary endpoints included pathological complete response (pCR) rate, pathological downstaging rate, margin-free resection (R0) rate, event-free survival, disease-free survival, progression-free survival, overall survival, treatment-related adverse events (TRAEs). The ORR was 70.2% (95% CI: 56.5% to 84.0%), meeting the pre-specified endpoint. The major pathological response (MPR), pCR, pathological downstaging, and R0 rates were 9.1%, 3.0%, 57.6%, and 87.9%, respectively. The median survivals were not reached. The most common TRAEs were diarrhea (78.7%) and rash (78.7%). Only three patients experienced grade 3/4 TRAEs. Biomarker analysis and tumor microenvironment dynamics by bulk RNA sequencing were included as predefined exploratory endpoints. CISH expression was a promising marker for Afatinib response (AUC = 0.918). In responders, compared to baseline samples, increasing T-cell- and B-cell-related features were observed in post-treatment tumor and lymph-node samples, respectively. Neoadjuvant Afatinib is feasible for stage III NSCLC+ patients and leads to dynamic changes in the tumor microenvironment.

Suggested Citation

  • Dongliang Bian & Liangdong Sun & Junjie Hu & Liang Duan & Haoran Xia & Xinsheng Zhu & Fenghuan Sun & Lele Zhang & Huansha Yu & Yicheng Xiong & Zhida Huang & Deping Zhao & Nan Song & Jie Yang & Xiao Ba, 2023. "Neoadjuvant Afatinib for stage III EGFR-mutant non-small cell lung cancer: a phase II study," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40349-z
    DOI: 10.1038/s41467-023-40349-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40349-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40349-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kosuke Yoshihara & Maria Shahmoradgoli & Emmanuel Martínez & Rahulsimham Vegesna & Hoon Kim & Wandaliz Torres-Garcia & Victor Treviño & Hui Shen & Peter W. Laird & Douglas A. Levine & Scott L. Carter , 2013. "Inferring tumour purity and stromal and immune cell admixture from expression data," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongqi Fan & Xinchen Zou & Guangyi Wang & Yahui Liu & Yanfang Jiang & Haoyan Wang & Ping Zhang & Feng Wei & Xiaohong Du & Meng Wang & Xiaodong Sun & Bai Ji & Xintong Hu & Liguo Chen & Peiwen Zhou & D, 2024. "A transcriptome based molecular classification scheme for cholangiocarcinoma and subtype-derived prognostic biomarker," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Shaoshuai Tang & Yunzhi Wang & Rongkui Luo & Rundong Fang & Yufeng Liu & Hang Xiang & Peng Ran & Yexin Tong & Mingjun Sun & Subei Tan & Wen Huang & Jie Huang & Jiacheng Lv & Ning Xu & Zhenmei Yao & Qi, 2024. "Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    3. Lucia Taraborrelli & Yasin Şenbabaoğlu & Lifen Wang & Junghyun Lim & Kerrigan Blake & Noelyn Kljavin & Sarah Gierke & Alexis Scherl & James Ziai & Erin McNamara & Mark Owyong & Shilpa Rao & Aslihan Ka, 2023. "Tumor-intrinsic expression of the autophagy gene Atg16l1 suppresses anti-tumor immunity in colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Jennifer G. Abelin & Erik J. Bergstrom & Keith D. Rivera & Hannah B. Taylor & Susan Klaeger & Charles Xu & Eva K. Verzani & C. Jackson White & Hilina B. Woldemichael & Maya Virshup & Meagan E. Olive &, 2023. "Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. Boshu Ouyang & Caihua Shan & Shun Shen & Xinnan Dai & Qingwang Chen & Xiaomin Su & Yongbin Cao & Xifeng Qin & Ying He & Siyu Wang & Ruizhe Xu & Ruining Hu & Leming Shi & Tun Lu & Wuli Yang & Shaojun P, 2024. "AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    6. Wanzun Lin & Li Chen & Haojiong Zhang & Xianxin Qiu & Qingting Huang & Fangzhu Wan & Ziyu Le & Shikai Geng & Anlan Zhang & Sufang Qiu & Long Chen & Lin Kong & Jiade J. Lu, 2023. "Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    7. Kang Wang & Ioannis Zerdes & Henrik J. Johansson & Dhifaf Sarhan & Yizhe Sun & Dimitris C. Kanellis & Emmanouil G. Sifakis & Artur Mezheyeuski & Xingrong Liu & Niklas Loman & Ingrid Hedenfalk & Jonas , 2024. "Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    8. Brian D. Lehmann & Antonio Colaprico & Tiago C. Silva & Jianjiao Chen & Hanbing An & Yuguang Ban & Hanchen Huang & Lily Wang & Jamaal L. James & Justin M. Balko & Paula I. Gonzalez-Ericsson & Melinda , 2021. "Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    9. Zhenmei Yao & Ning Xu & Guoguo Shang & Haixing Wang & Hui Tao & Yunzhi Wang & Zhaoyu Qin & Subei Tan & Jinwen Feng & Jiajun Zhu & Fahan Ma & Sha Tian & Qiao Zhang & Yuanyuan Qu & Jun Hou & Jianming Gu, 2023. "Proteogenomics of different urothelial bladder cancer stages reveals distinct molecular features for papillary cancer and carcinoma in situ," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    10. Bruna Calsina & Elena Piñeiro-Yáñez & Ángel M. Martínez-Montes & Eduardo Caleiras & Ángel Fernández-Sanromán & María Monteagudo & Rafael Torres-Pérez & Coral Fustero-Torre & Marta Pulgarín-Alfaro & Ed, 2023. "Genomic and immune landscape Of metastatic pheochromocytoma and paraganglioma," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Shen Zhao & De-Pin Chen & Tong Fu & Jing-Cheng Yang & Ding Ma & Xiu-Zhi Zhu & Xiang-Xue Wang & Yi-Ping Jiao & Xi Jin & Yi Xiao & Wen-Xuan Xiao & Hu-Yunlong Zhang & Hong Lv & Anant Madabhushi & Wen-Tao, 2023. "Single-cell morphological and topological atlas reveals the ecosystem diversity of human breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    12. Xiaodong Liu & Ke Zhang & Neslihan A. Kaya & Zhe Jia & Dafei Wu & Tingting Chen & Zhiyuan Liu & Sinan Zhu & Axel M. Hillmer & Torsten Wuestefeld & Jin Liu & Yun Shen Chan & Zheng Hu & Liang Ma & Li Ji, 2024. "Tumor phylogeography reveals block-shaped spatial heterogeneity and the mode of evolution in Hepatocellular Carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Zheqi Li & Olivia McGinn & Yang Wu & Amir Bahreini & Nolan M. Priedigkeit & Kai Ding & Sayali Onkar & Caleb Lampenfeld & Carol A. Sartorius & Lori Miller & Margaret Rosenzweig & Ofir Cohen & Nikhil Wa, 2022. "ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Yuanyuan Qu & Xiaohui Wu & Aihetaimujiang Anwaier & Jinwen Feng & Wenhao Xu & Xiaoru Pei & Yu Zhu & Yang Liu & Lin Bai & Guojian Yang & Xi Tian & Jiaqi Su & Guo-Hai Shi & Da-Long Cao & Fujiang Xu & Yu, 2022. "Proteogenomic characterization of MiT family translocation renal cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Khoa A. Tran & Venkateswar Addala & Rebecca L. Johnston & David Lovell & Andrew Bradley & Lambros T. Koufariotis & Scott Wood & Sunny Z. Wu & Daniel Roden & Ghamdan Al-Eryani & Alexander Swarbrick & E, 2023. "Performance of tumour microenvironment deconvolution methods in breast cancer using single-cell simulated bulk mixtures," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Shixiang Wang & Chen-Yi Wu & Ming-Ming He & Jia-Xin Yong & Yan-Xing Chen & Li-Mei Qian & Jin-Ling Zhang & Zhao-Lei Zeng & Rui-Hua Xu & Feng Wang & Qi Zhao, 2024. "Machine learning-based extrachromosomal DNA identification in large-scale cohorts reveals its clinical implications in cancer," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. María-Jesús Lobón-Iglesias & Mamy Andrianteranagna & Zhi-Yan Han & Céline Chauvin & Julien Masliah-Planchon & Valeria Manriquez & Arnault Tauziede-Espariat & Sandrina Turczynski & Rachida Bouarich-Bou, 2023. "Imaging and multi-omics datasets converge to define different neural progenitor origins for ATRT-SHH subgroups," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    18. Qi Song & Ye Yang & Dongxian Jiang & Zhaoyu Qin & Chen Xu & Haixing Wang & Jie Huang & Lingli Chen & Rongkui Luo & Xiaolei Zhang & Yufeng Huang & Lei Xu & Zixiang Yu & Subei Tan & Minying Deng & Ruqun, 2022. "Proteomic analysis reveals key differences between squamous cell carcinomas and adenocarcinomas across multiple tissues," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    19. Fatima Khan & Yiyun Lin & Heba Ali & Lizhi Pang & Madeline Dunterman & Wen-Hao Hsu & Katie Frenis & R. Grant Rowe & Derek A. Wainwright & Kathleen McCortney & Leah K. Billingham & Jason Miska & Craig , 2024. "Lactate dehydrogenase A regulates tumor-macrophage symbiosis to promote glioblastoma progression," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    20. Yin Li & Manling Jiang & Ling Aye & Li Luo & Yong Zhang & Fengkai Xu & Yongqi Wei & Dan Peng & Xiang He & Jie Gu & Xiaofang Yu & Guoping Li & Di Ge & Chunlai Lu, 2024. "UPP1 promotes lung adenocarcinoma progression through the induction of an immunosuppressive microenvironment," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40349-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.