IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53830-0.html
   My bibliography  Save this article

A proteogenomic analysis of cervical cancer reveals therapeutic and biological insights

Author

Listed:
  • Jing Yu

    (Chinese Academy of Medical Sciences and Peking Union Medical College
    Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Xiuqi Gui

    (Chinese Academy of Sciences)

  • Yunhao Zou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qian Liu

    (Chinese Academy of Sciences)

  • Zhicheng Yang

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Jusheng An

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Xuan Guo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Kaihua Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jiaming Guo

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Manni Huang

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Shuhan Zhou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jing Zuo

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Yimin Chen

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Lu Deng

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Guangwen Yuan

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Ning Li

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Yan Song

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Jia Jia

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Jia Zeng

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Yuxi Zhao

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Xianming Liu

    (Ltd)

  • Xiaoxian Du

    (Ltd)

  • Yansheng Liu

    (Yale University School of Medicine)

  • Pei Wang

    (Icahn School of Medicine at Mount Sinai)

  • Bing Zhang

    (One Baylor Plaza)

  • Li Ding

    (Washington University)

  • Ana I. Robles

    (National Institutes of Health)

  • Henry Rodriguez

    (National Institutes of Health)

  • Hu Zhou

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhen Shao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lingying Wu

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Daming Gao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Although the incidence of cervical cancer (CC) has been reduced in high-income countries due to human papillomavirus (HPV) vaccination and screening strategies, it remains a significant public health issue that poses a threat to women’s health in low-income countries. Here, we perform a comprehensive proteogenomic profiling of CC tumors obtained from 139 Chinese women. Integrated proteogenomic analysis links genetic aberrations to downstream pathogenesis-related pathways and reveals the landscape of HPV-associated multi-omic changes. EP300 is found to enhance the acetylation of FOSL2-K222, consequently accelerating the malignant proliferation of CC cells. Proteomic stratification identifies three patient subgroups with distinct features in prognosis, genetic alterations, immune infiltration, and post-translational modification regulations. PRKCB is further identified as a potential radioresponse-related biomarker of CC patients. This study provides a valuable public resource for researchers and clinicians to delve into the molecular basis of CC, to identify potential treatments and to ultimately advance clinical practice.

Suggested Citation

  • Jing Yu & Xiuqi Gui & Yunhao Zou & Qian Liu & Zhicheng Yang & Jusheng An & Xuan Guo & Kaihua Wang & Jiaming Guo & Manni Huang & Shuhan Zhou & Jing Zuo & Yimin Chen & Lu Deng & Guangwen Yuan & Ning Li , 2024. "A proteogenomic analysis of cervical cancer reveals therapeutic and biological insights," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53830-0
    DOI: 10.1038/s41467-024-53830-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53830-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53830-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philipp Mertins & D. R. Mani & Kelly V. Ruggles & Michael A. Gillette & Karl R. Clauser & Pei Wang & Xianlong Wang & Jana W. Qiao & Song Cao & Francesca Petralia & Emily Kawaler & Filip Mundt & Karste, 2016. "Proteogenomics connects somatic mutations to signalling in breast cancer," Nature, Nature, vol. 534(7605), pages 55-62, June.
    2. Loren M. Lasko & Clarissa G. Jakob & Rohinton P. Edalji & Wei Qiu & Debra Montgomery & Enrico L. Digiammarino & T. Matt Hansen & Roberto M. Risi & Robin Frey & Vlasios Manaves & Bailin Shaw & Mikkel A, 2017. "Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours," Nature, Nature, vol. 550(7674), pages 128-132, October.
    3. Michael S. Lawrence & Petar Stojanov & Paz Polak & Gregory V. Kryukov & Kristian Cibulskis & Andrey Sivachenko & Scott L. Carter & Chip Stewart & Craig H. Mermel & Steven A. Roberts & Adam Kiezun & Pe, 2013. "Mutational heterogeneity in cancer and the search for new cancer-associated genes," Nature, Nature, vol. 499(7457), pages 214-218, July.
    4. Gaurav Mendiratta & Eugene Ke & Meraj Aziz & David Liarakos & Melinda Tong & Edward C. Stites, 2021. "Cancer gene mutation frequencies for the U.S. population," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Akinyemi I. Ojesina & Lee Lichtenstein & Samuel S. Freeman & Chandra Sekhar Pedamallu & Ivan Imaz-Rosshandler & Trevor J. Pugh & Andrew D. Cherniack & Lauren Ambrogio & Kristian Cibulskis & Bjørn Bert, 2014. "Landscape of genomic alterations in cervical carcinomas," Nature, Nature, vol. 506(7488), pages 371-375, February.
    6. Kosuke Yoshihara & Maria Shahmoradgoli & Emmanuel Martínez & Rahulsimham Vegesna & Hoon Kim & Wandaliz Torres-Garcia & Victor Treviño & Hui Shen & Peter W. Laird & Douglas A. Levine & Scott L. Carter , 2013. "Inferring tumour purity and stromal and immune cell admixture from expression data," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Qu & Jinwen Feng & Xiaohui Wu & Lin Bai & Wenhao Xu & Lingli Zhu & Yang Liu & Fujiang Xu & Xuan Zhang & Guojian Yang & Jiacheng Lv & Xiuping Chen & Guo-Hai Shi & Hong-Kai Wang & Da-Long Cao &, 2022. "A proteogenomic analysis of clear cell renal cell carcinoma in a Chinese population," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    2. Jennifer G. Abelin & Erik J. Bergstrom & Keith D. Rivera & Hannah B. Taylor & Susan Klaeger & Charles Xu & Eva K. Verzani & C. Jackson White & Hilina B. Woldemichael & Maya Virshup & Meagan E. Olive &, 2023. "Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Yuanyuan Qu & Xiaohui Wu & Aihetaimujiang Anwaier & Jinwen Feng & Wenhao Xu & Xiaoru Pei & Yu Zhu & Yang Liu & Lin Bai & Guojian Yang & Xi Tian & Jiaqi Su & Guo-Hai Shi & Da-Long Cao & Fujiang Xu & Yu, 2022. "Proteogenomic characterization of MiT family translocation renal cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Brian D. Lehmann & Antonio Colaprico & Tiago C. Silva & Jianjiao Chen & Hanbing An & Yuguang Ban & Hanchen Huang & Lily Wang & Jamaal L. James & Justin M. Balko & Paula I. Gonzalez-Ericsson & Melinda , 2021. "Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    5. Yafei Jiang & Jinzeng Wang & Mengxiong Sun & Dongqing Zuo & Hongsheng Wang & Jiakang Shen & Wenyan Jiang & Haoran Mu & Xiaojun Ma & Fei Yin & Jun Lin & Chongren Wang & Shuting Yu & Lu Jiang & Gang Lv , 2022. "Multi-omics analysis identifies osteosarcoma subtypes with distinct prognosis indicating stratified treatment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Funan He & Abhik M. Bandyopadhyay & Laura J. Klesse & Anna Rogojina & Sang H. Chun & Erin Butler & Taylor Hartshorne & Trevor Holland & Dawn Garcia & Korri Weldon & Luz-Nereida Perez Prado & Anne-Mari, 2023. "Genomic profiling of subcutaneous patient-derived xenografts reveals immune constraints on tumor evolution in childhood solid cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Hailiang Zhang & Lin Bai & Xin-Qiang Wu & Xi Tian & Jinwen Feng & Xiaohui Wu & Guo-Hai Shi & Xiaoru Pei & Jiacheng Lyu & Guojian Yang & Yang Liu & Wenhao Xu & Aihetaimujiang Anwaier & Yu Zhu & Da-Long, 2023. "Proteogenomics of clear cell renal cell carcinoma response to tyrosine kinase inhibitor," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    8. Shaoshuai Tang & Yunzhi Wang & Rongkui Luo & Rundong Fang & Yufeng Liu & Hang Xiang & Peng Ran & Yexin Tong & Mingjun Sun & Subei Tan & Wen Huang & Jie Huang & Jiacheng Lv & Ning Xu & Zhenmei Yao & Qi, 2024. "Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    9. Anna Luiza Silva Almeida Vicente & Alexei Novoloaca & Vincent Cahais & Zainab Awada & Cyrille Cuenin & Natália Spitz & André Lopes Carvalho & Adriane Feijó Evangelista & Camila Souza Crovador & Rui Ma, 2022. "Cutaneous and acral melanoma cross-OMICs reveals prognostic cancer drivers associated with pathobiology and ultraviolet exposure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Katrin Stuber & Tobias Schneider & Jill Werner & Michael Kovermann & Andreas Marx & Martin Scheffner, 2021. "Structural and functional consequences of NEDD8 phosphorylation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    11. Liyuan Zhou & Qiongzi Qiu & Qing Zhou & Jianwei Li & Mengqian Yu & Kezhen Li & Lingling Xu & Xiaohui Ke & Haiming Xu & Bingjian Lu & Hui Wang & Weiguo Lu & Pengyuan Liu & Yan Lu, 2022. "Long-read sequencing unveils high-resolution HPV integration and its oncogenic progression in cervical cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Oriol Pich & Iker Reyes-Salazar & Abel Gonzalez-Perez & Nuria Lopez-Bigas, 2022. "Discovering the drivers of clonal hematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Chengxin Dai & Anja Füllgrabe & Julianus Pfeuffer & Elizaveta M. Solovyeva & Jingwen Deng & Pablo Moreno & Selvakumar Kamatchinathan & Deepti Jaiswal Kundu & Nancy George & Silvie Fexova & Björn Grüni, 2021. "A proteomics sample metadata representation for multiomics integration and big data analysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Mariko Sasaki & Daiki Kato & Karin Murakami & Hiroshi Yoshida & Shohei Takase & Tsuguteru Otsubo & Hideaki Ogiwara, 2024. "Targeting dependency on a paralog pair of CBP/p300 against de-repression of KREMEN2 in SMARCB1-deficient cancers," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    15. Lucia Taraborrelli & Yasin Şenbabaoğlu & Lifen Wang & Junghyun Lim & Kerrigan Blake & Noelyn Kljavin & Sarah Gierke & Alexis Scherl & James Ziai & Erin McNamara & Mark Owyong & Shilpa Rao & Aslihan Ka, 2023. "Tumor-intrinsic expression of the autophagy gene Atg16l1 suppresses anti-tumor immunity in colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Xiaoli Wang & Wenlong Jia & Mengyao Wang & Jihong Liu & Xianrong Zhou & Zhiqing Liang & Qinghua Zhang & Sixiang Long & Suolang Quzhen & Xiangchun Li & Qiang Tian & Xiong Li & Haiying Sun & Caili Zhao , 2022. "Human papillomavirus integration perspective in small cell cervical carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Sumana Srivatsa & Hesam Montazeri & Gaia Bianco & Mairene Coto-Llerena & Mattia Marinucci & Charlotte K. Y. Ng & Salvatore Piscuoglio & Niko Beerenwinkel, 2022. "Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Yiqun Zhang & Fengju Chen & Darshan S. Chandrashekar & Sooryanarayana Varambally & Chad J. Creighton, 2022. "Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Benjamin A. Nacev & Francisco Sanchez-Vega & Shaleigh A. Smith & Cristina R. Antonescu & Evan Rosenbaum & Hongyu Shi & Cerise Tang & Nicholas D. Socci & Satshil Rana & Rodrigo Gularte-Mérida & Ahmet Z, 2022. "Clinical sequencing of soft tissue and bone sarcomas delineates diverse genomic landscapes and potential therapeutic targets," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53830-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.