IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34460-w.html
   My bibliography  Save this article

Proteogenomic characterization of MiT family translocation renal cell carcinoma

Author

Listed:
  • Yuanyuan Qu

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University
    Shanghai Medical College, Shanghai Genitourinary Cancer Institute)

  • Xiaohui Wu

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University)

  • Aihetaimujiang Anwaier

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University
    Shanghai Medical College, Shanghai Genitourinary Cancer Institute)

  • Jinwen Feng

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University)

  • Wenhao Xu

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University
    Shanghai Medical College, Shanghai Genitourinary Cancer Institute)

  • Xiaoru Pei

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University)

  • Yu Zhu

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University
    Shanghai Medical College, Shanghai Genitourinary Cancer Institute)

  • Yang Liu

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University)

  • Lin Bai

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University)

  • Guojian Yang

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University)

  • Xi Tian

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University
    Shanghai Medical College, Shanghai Genitourinary Cancer Institute)

  • Jiaqi Su

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University
    Shanghai Medical College, Shanghai Genitourinary Cancer Institute)

  • Guo-Hai Shi

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University
    Shanghai Medical College, Shanghai Genitourinary Cancer Institute)

  • Da-Long Cao

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University
    Shanghai Medical College, Shanghai Genitourinary Cancer Institute)

  • Fujiang Xu

    (The Affiliated Hospital of Southwest Medical University)

  • Yue Wang

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University
    Shanghai Medical College, Shanghai Genitourinary Cancer Institute)

  • Hua-Lei Gan

    (Shanghai Medical College, Shanghai Genitourinary Cancer Institute
    Fudan University Shanghai Cancer Center)

  • Shujuan Ni

    (Shanghai Medical College, Shanghai Genitourinary Cancer Institute
    Fudan University Shanghai Cancer Center)

  • Meng-Hong Sun

    (Shanghai Medical College, Shanghai Genitourinary Cancer Institute
    Fudan University Shanghai Cancer Center)

  • Jian-Yuan Zhao

    (Shanghai Jiao Tong University School of Medicine)

  • Hailiang Zhang

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University
    Shanghai Medical College, Shanghai Genitourinary Cancer Institute)

  • Dingwei Ye

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University
    Shanghai Medical College, Shanghai Genitourinary Cancer Institute)

  • Chen Ding

    (Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University)

Abstract

Microphthalmia transcription factor (MiT) family translocation renal cell carcinoma (tRCC) is a rare type of kidney cancer, which is not well characterized. Here we show the comprehensive proteogenomic analysis of tRCC tumors and normal adjacent tissues to elucidate the molecular landscape of this disease. Our study reveals that defective DNA repair plays an important role in tRCC carcinogenesis and progression. Metabolic processes are markedly dysregulated at both the mRNA and protein levels. Proteomic and phosphoproteome data identify mTOR signaling pathway as a potential therapeutic target. Moreover, molecular subtyping and immune infiltration analysis characterize the inter-tumoral heterogeneity of tRCC. Multi-omic integration reveals the dysregulation of cellular processes affected by genomic alterations, including oxidative phosphorylation, autophagy, transcription factor activity, and proteasome function. This study represents a comprehensive proteogenomic analysis of tRCC, providing valuable insights into its biological mechanisms, disease diagnosis, and prognostication.

Suggested Citation

  • Yuanyuan Qu & Xiaohui Wu & Aihetaimujiang Anwaier & Jinwen Feng & Wenhao Xu & Xiaoru Pei & Yu Zhu & Yang Liu & Lin Bai & Guojian Yang & Xi Tian & Jiaqi Su & Guo-Hai Shi & Da-Long Cao & Fujiang Xu & Yu, 2022. "Proteogenomic characterization of MiT family translocation renal cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34460-w
    DOI: 10.1038/s41467-022-34460-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34460-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34460-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lydie Cheval & Fabien Pierrat & Rabary Rajerison & David Piquemal & Alain Doucet, 2012. "Of Mice and Men: Divergence of Gene Expression Patterns in Kidney," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-12, October.
    2. Kosuke Yoshihara & Maria Shahmoradgoli & Emmanuel Martínez & Rahulsimham Vegesna & Hoon Kim & Wandaliz Torres-Garcia & Victor Treviño & Hui Shen & Peter W. Laird & Douglas A. Levine & Scott L. Carter , 2013. "Inferring tumour purity and stromal and immune cell admixture from expression data," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    3. I-Na Lu & Celia Dobersalske & Laurèl Rauschenbach & Sarah Teuber-Hanselmann & Anita Steinbach & Vivien Ullrich & Shruthi Prasad & Tobias Blau & Sied Kebir & Jens T. Siveke & Jürgen C. Becker & Ulrich , 2021. "Tumor-associated hematopoietic stem and progenitor cells positively linked to glioblastoma progression," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. Michael S. Lawrence & Petar Stojanov & Paz Polak & Gregory V. Kryukov & Kristian Cibulskis & Andrey Sivachenko & Scott L. Carter & Chip Stewart & Craig H. Mermel & Steven A. Roberts & Adam Kiezun & Pe, 2013. "Mutational heterogeneity in cancer and the search for new cancer-associated genes," Nature, Nature, vol. 499(7457), pages 214-218, July.
    5. Xiang-Ming Wang & Yang Lu & Yi-Meng Song & Jun Dong & Ruo-Yan Li & Guo-Liang Wang & Xu Wang & Shu-Dong Zhang & Zhou-Huan Dong & Min Lu & Shi-Yu Wang & Li-Yuan Ge & Guang-Da Luo & Run-Zhuo Ma & Steve G, 2020. "Integrative genomic study of Chinese clear cell renal cell carcinoma reveals features associated with thrombus," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. David A. Barbie & Pablo Tamayo & Jesse S. Boehm & So Young Kim & Susan E. Moody & Ian F. Dunn & Anna C. Schinzel & Peter Sandy & Etienne Meylan & Claudia Scholl & Stefan Fröhling & Edmond M. Chan & Ma, 2009. "Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1," Nature, Nature, vol. 462(7269), pages 108-112, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Qu & Jinwen Feng & Xiaohui Wu & Lin Bai & Wenhao Xu & Lingli Zhu & Yang Liu & Fujiang Xu & Xuan Zhang & Guojian Yang & Jiacheng Lv & Xiuping Chen & Guo-Hai Shi & Hong-Kai Wang & Da-Long Cao &, 2022. "A proteogenomic analysis of clear cell renal cell carcinoma in a Chinese population," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    2. Hailiang Zhang & Lin Bai & Xin-Qiang Wu & Xi Tian & Jinwen Feng & Xiaohui Wu & Guo-Hai Shi & Xiaoru Pei & Jiacheng Lyu & Guojian Yang & Yang Liu & Wenhao Xu & Aihetaimujiang Anwaier & Yu Zhu & Da-Long, 2023. "Proteogenomics of clear cell renal cell carcinoma response to tyrosine kinase inhibitor," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Wanzun Lin & Li Chen & Haojiong Zhang & Xianxin Qiu & Qingting Huang & Fangzhu Wan & Ziyu Le & Shikai Geng & Anlan Zhang & Sufang Qiu & Long Chen & Lin Kong & Jiade J. Lu, 2023. "Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    4. Kang Wang & Ioannis Zerdes & Henrik J. Johansson & Dhifaf Sarhan & Yizhe Sun & Dimitris C. Kanellis & Emmanouil G. Sifakis & Artur Mezheyeuski & Xingrong Liu & Niklas Loman & Ingrid Hedenfalk & Jonas , 2024. "Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    5. Brian D. Lehmann & Antonio Colaprico & Tiago C. Silva & Jianjiao Chen & Hanbing An & Yuguang Ban & Hanchen Huang & Lily Wang & Jamaal L. James & Justin M. Balko & Paula I. Gonzalez-Ericsson & Melinda , 2021. "Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    6. Zhenmei Yao & Ning Xu & Guoguo Shang & Haixing Wang & Hui Tao & Yunzhi Wang & Zhaoyu Qin & Subei Tan & Jinwen Feng & Jiajun Zhu & Fahan Ma & Sha Tian & Qiao Zhang & Yuanyuan Qu & Jun Hou & Jianming Gu, 2023. "Proteogenomics of different urothelial bladder cancer stages reveals distinct molecular features for papillary cancer and carcinoma in situ," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    7. Khoa A. Tran & Venkateswar Addala & Rebecca L. Johnston & David Lovell & Andrew Bradley & Lambros T. Koufariotis & Scott Wood & Sunny Z. Wu & Daniel Roden & Ghamdan Al-Eryani & Alexander Swarbrick & E, 2023. "Performance of tumour microenvironment deconvolution methods in breast cancer using single-cell simulated bulk mixtures," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Yin Li & Manling Jiang & Ling Aye & Li Luo & Yong Zhang & Fengkai Xu & Yongqi Wei & Dan Peng & Xiang He & Jie Gu & Xiaofang Yu & Guoping Li & Di Ge & Chunlai Lu, 2024. "UPP1 promotes lung adenocarcinoma progression through the induction of an immunosuppressive microenvironment," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    9. Yafei Jiang & Jinzeng Wang & Mengxiong Sun & Dongqing Zuo & Hongsheng Wang & Jiakang Shen & Wenyan Jiang & Haoran Mu & Xiaojun Ma & Fei Yin & Jun Lin & Chongren Wang & Shuting Yu & Lu Jiang & Gang Lv , 2022. "Multi-omics analysis identifies osteosarcoma subtypes with distinct prognosis indicating stratified treatment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Funan He & Abhik M. Bandyopadhyay & Laura J. Klesse & Anna Rogojina & Sang H. Chun & Erin Butler & Taylor Hartshorne & Trevor Holland & Dawn Garcia & Korri Weldon & Luz-Nereida Perez Prado & Anne-Mari, 2023. "Genomic profiling of subcutaneous patient-derived xenografts reveals immune constraints on tumor evolution in childhood solid cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Xiaoping Su & Xiaofan Lu & Sehrish Khan Bazai & Linda Dainese & Arnauld Verschuur & Benoit Dumont & Roger Mouawad & Li Xu & Wenxuan Cheng & Fangrong Yan & Sabine Irtan & Véronique Lindner & Catherine , 2023. "Delineating the interplay between oncogenic pathways and immunity in anaplastic Wilms tumors," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Zhongqi Fan & Xinchen Zou & Guangyi Wang & Yahui Liu & Yanfang Jiang & Haoyan Wang & Ping Zhang & Feng Wei & Xiaohong Du & Meng Wang & Xiaodong Sun & Bai Ji & Xintong Hu & Liguo Chen & Peiwen Zhou & D, 2024. "A transcriptome based molecular classification scheme for cholangiocarcinoma and subtype-derived prognostic biomarker," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Dongliang Bian & Liangdong Sun & Junjie Hu & Liang Duan & Haoran Xia & Xinsheng Zhu & Fenghuan Sun & Lele Zhang & Huansha Yu & Yicheng Xiong & Zhida Huang & Deping Zhao & Nan Song & Jie Yang & Xiao Ba, 2023. "Neoadjuvant Afatinib for stage III EGFR-mutant non-small cell lung cancer: a phase II study," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Shaoshuai Tang & Yunzhi Wang & Rongkui Luo & Rundong Fang & Yufeng Liu & Hang Xiang & Peng Ran & Yexin Tong & Mingjun Sun & Subei Tan & Wen Huang & Jie Huang & Jiacheng Lv & Ning Xu & Zhenmei Yao & Qi, 2024. "Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    15. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Ambrocio Sanchez & Pedro Ortega & Ramin Sakhtemani & Lavanya Manjunath & Sunwoo Oh & Elodie Bournique & Alexandrea Becker & Kyumin Kim & Cameron Durfee & Nuri Alpay Temiz & Xiaojiang S. Chen & Reuben , 2024. "Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Yue Wang & Dhamotharan Pattarayan & Haozhe Huang & Yueshan Zhao & Sihan Li & Yifei Wang & Min Zhang & Song Li & Da Yang, 2024. "Systematic investigation of chemo-immunotherapy synergism to shift anti-PD-1 resistance in cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Anna Luiza Silva Almeida Vicente & Alexei Novoloaca & Vincent Cahais & Zainab Awada & Cyrille Cuenin & Natália Spitz & André Lopes Carvalho & Adriane Feijó Evangelista & Camila Souza Crovador & Rui Ma, 2022. "Cutaneous and acral melanoma cross-OMICs reveals prognostic cancer drivers associated with pathobiology and ultraviolet exposure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Yan Li & Chen Xu & Bing Wang & Fujiang Xu & Fahan Ma & Yuanyuan Qu & Dongxian Jiang & Kai Li & Jinwen Feng & Sha Tian & Xiaohui Wu & Yunzhi Wang & Yang Liu & Zhaoyu Qin & Yalan Liu & Jing Qin & Qi Son, 2022. "Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
    20. Rotem Katzir & Noam Rudberg & Keren Yizhak, 2022. "Estimating tumor mutational burden from RNA-sequencing without a matched-normal sample," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34460-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.