Hyaluronic acid-bilirubin nanomedicine-based combination chemoimmunotherapy
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-40270-5
Download full text from publisher
References listed on IDEAS
- Sydney R. Gordon & Roy L. Maute & Ben W. Dulken & Gregor Hutter & Benson M. George & Melissa N. McCracken & Rohit Gupta & Jonathan M. Tsai & Rahul Sinha & Daniel Corey & Aaron M. Ring & Andrew J. Conn, 2017. "PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity," Nature, Nature, vol. 545(7655), pages 495-499, May.
- Olivier De Henau & Matthew Rausch & David Winkler & Luis Felipe Campesato & Cailian Liu & Daniel Hirschhorn Cymerman & Sadna Budhu & Arnab Ghosh & Melissa Pink & Jeremy Tchaicha & Mark Douglas & Thoma, 2016. "Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells," Nature, Nature, vol. 539(7629), pages 443-447, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chih-Wei Chou & Chia-Nung Hung & Cheryl Hsiang-Ling Chiu & Xi Tan & Meizhen Chen & Chien-Chin Chen & Moawiz Saeed & Che-Wei Hsu & Michael A. Liss & Chiou-Miin Wang & Zhao Lai & Nathaniel Alvarez & Paw, 2023. "Phagocytosis-initiated tumor hybrid cells acquire a c-Myc-mediated quasi-polarization state for immunoevasion and distant dissemination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Charlotte R. Bell & Victoria S. Pelly & Agrin Moeini & Shih-Chieh Chiang & Eimear Flanagan & Christian P. Bromley & Christopher Clark & Charles H. Earnshaw & Maria A. Koufaki & Eduardo Bonavita & Sant, 2022. "Chemotherapy-induced COX-2 upregulation by cancer cells defines their inflammatory properties and limits the efficacy of chemoimmunotherapy combinations," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Shiqun Wang & Wei Yan & Lingkai Kong & Shuguang Zuo & Jingyi Wu & Chunxiao Zhu & Huaping Huang & Bohao He & Jie Dong & Jiwu Wei, 2023. "Oncolytic viruses engineered to enforce cholesterol efflux restore tumor-associated macrophage phagocytosis and anti-tumor immunity in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
- Mokarram Hossain & Raymond Shim & Woo-Yong Lee & Arlene H. Sharpe & Paul Kubes, 2022. "Gata6+ resident peritoneal macrophages promote the growth of liver metastasis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Xin Guan & Liping Sun & Yuting Shen & Fengshan Jin & Xiaowan Bo & Chunyan Zhu & Xiaoxia Han & Xiaolong Li & Yu Chen & Huixiong Xu & Wenwen Yue, 2022. "Nanoparticle-enhanced radiotherapy synergizes with PD-L1 blockade to limit post-surgical cancer recurrence and metastasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Mingming Zhao & Xiaohui Cheng & Pingwen Shao & Yao Dong & Yongjie Wu & Lin Xiao & Zhiying Cui & Xuedi Sun & Chuancheng Gao & Jiangning Chen & Zhen Huang & Junfeng Zhang, 2024. "Bacterial protoplast-derived nanovesicles carrying CRISPR-Cas9 tools re-educate tumor-associated macrophages for enhanced cancer immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Lei Zhang & Li Jiang & Liang Yu & Qin Li & Xiangjun Tian & Jingquan He & Ling Zeng & Yuqin Yang & Chaoran Wang & Yuhan Wei & Xiaoyue Jiang & Jing Li & Xiaolu Ge & Qisheng Gu & Jikun Li & Di Wu & Antho, 2022. "Inhibition of UBA6 by inosine augments tumour immunogenicity and responses," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Fengqiao Li & Xue-Qing Zhang & William Ho & Maoping Tang & Zhongyu Li & Lei Bu & Xiaoyang Xu, 2023. "mRNA lipid nanoparticle-mediated pyroptosis sensitizes immunologically cold tumors to checkpoint immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Xudong Wang & Siyu Su & Yuqing Zhu & Xiaolong Cheng & Chen Cheng & Leilei Chen & Anhua Lei & Li Zhang & Yuyan Xu & Dan Ye & Yi Zhang & Wei Li & Jin Zhang, 2023. "Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40270-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.