IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32080-y.html
   My bibliography  Save this article

Gata6+ resident peritoneal macrophages promote the growth of liver metastasis

Author

Listed:
  • Mokarram Hossain

    (University of Calgary
    University of Calgary
    Early Oncology, AstraZeneca)

  • Raymond Shim

    (University of Calgary
    University of Calgary)

  • Woo-Yong Lee

    (University of Calgary)

  • Arlene H. Sharpe

    (Blavatnik Institute, Harvard Medical School, and Evergrande Centre for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital
    Broad Institute of MIT and Harvard
    Brigham and Women’s Hospital)

  • Paul Kubes

    (University of Calgary
    University of Calgary
    University of Calgary)

Abstract

Emerging evidence suggests that resident macrophages within tissues are enablers of tumor growth. However, a second population of resident macrophages surrounds all visceral organs within the cavities and nothing is known about these GATA6+ large peritoneal macrophages (GLPMs) despite their ability to invade injured visceral organs by sensing danger signals. Here, we show that GLPMs invade growing metastases that breach the visceral mesothelium of the liver via the “find me signal”, ATP. Depleting GLPMs either by pharmacological or genetic tools, reduces metastases growth. Apoptotic bodies from tumor cells induces programmed cell death ligand 1 (PD-L1) upregulation on GLPMs which block CD8+ T cell function. Direct targeting of GLPMs by intraperitoneal but not intravenous administration of anti-PD-L1 reduces tumor growth. Thermal ablation of liver metastases recruits huge numbers of GLPMs and enables rapid regrowth of tumors. GLPMs contribute to metastatic growth and tumor recurrence.

Suggested Citation

  • Mokarram Hossain & Raymond Shim & Woo-Yong Lee & Arlene H. Sharpe & Paul Kubes, 2022. "Gata6+ resident peritoneal macrophages promote the growth of liver metastasis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32080-y
    DOI: 10.1038/s41467-022-32080-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32080-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32080-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles P. Lai & Edward Y. Kim & Christian E. Badr & Ralph Weissleder & Thorsten R. Mempel & Bakhos A. Tannous & Xandra O. Breakefield, 2015. "Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    2. Irene Soncin & Jianpeng Sheng & Qi Chen & Shihui Foo & Kaibo Duan & Josephine Lum & Michael Poidinger & Francesca Zolezzi & Klaus Karjalainen & Christiane Ruedl, 2018. "The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Sydney R. Gordon & Roy L. Maute & Ben W. Dulken & Gregor Hutter & Benson M. George & Melissa N. McCracken & Rohit Gupta & Jonathan M. Tsai & Rahul Sinha & Daniel Corey & Aaron M. Ring & Andrew J. Conn, 2017. "PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity," Nature, Nature, vol. 545(7655), pages 495-499, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Wei Chou & Chia-Nung Hung & Cheryl Hsiang-Ling Chiu & Xi Tan & Meizhen Chen & Chien-Chin Chen & Moawiz Saeed & Che-Wei Hsu & Michael A. Liss & Chiou-Miin Wang & Zhao Lai & Nathaniel Alvarez & Paw, 2023. "Phagocytosis-initiated tumor hybrid cells acquire a c-Myc-mediated quasi-polarization state for immunoevasion and distant dissemination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Juan Du & Junlei Zhang & Lin Wang & Xun Wang & Yaxing Zhao & Jiaoying Lu & Tingmin Fan & Meng Niu & Jie Zhang & Fei Cheng & Jun Li & Qi Zhu & Daoqiang Zhang & Hao Pei & Guang Li & Xingguang Liang & He, 2023. "Selective oxidative protection leads to tissue topological changes orchestrated by macrophage during ulcerative colitis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Shiqun Wang & Wei Yan & Lingkai Kong & Shuguang Zuo & Jingyi Wu & Chunxiao Zhu & Huaping Huang & Bohao He & Jie Dong & Jiwu Wei, 2023. "Oncolytic viruses engineered to enforce cholesterol efflux restore tumor-associated macrophage phagocytosis and anti-tumor immunity in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Jinhong Xu & Le Cui & Jiaqi Wang & Shasha Zheng & Huahua Zhang & Shuo Ke & Xiaoqin Cao & Yanteng Shi & Jing Li & Ke Zen & Antonio Vidal-Puig & Chen-Yu Zhang & Liang Li & Xiaohong Jiang, 2023. "Cold-activated brown fat-derived extracellular vesicle-miR-378a-3p stimulates hepatic gluconeogenesis in male mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Yonghyun Lee & Jongyoon Shinn & Cheng Xu & Hannah E. Dobson & Nouri Neamati & James J. Moon, 2023. "Hyaluronic acid-bilirubin nanomedicine-based combination chemoimmunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Xudong Wang & Siyu Su & Yuqing Zhu & Xiaolong Cheng & Chen Cheng & Leilei Chen & Anhua Lei & Li Zhang & Yuyan Xu & Dan Ye & Yi Zhang & Wei Li & Jin Zhang, 2023. "Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32080-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.