IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40251-8.html
   My bibliography  Save this article

Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions

Author

Listed:
  • Sheng Yang

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Weiwei Cai

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Zhejiang Agriculture and Forestry University)

  • Ruijie Wu

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Yu Huang

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Qiaoling Lu

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Hui Wang

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Xueying Huang

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Yapeng Zhang

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Qing Wu

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Xingge Cheng

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Meiyun Wan

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Jingang Lv

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Qian Liu

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Xiang Zheng

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Shaoliang Mou

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Deyi Guan

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

  • Shuilin He

    (Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University
    Fujian Agriculture and Forestry University)

Abstract

High temperature and high humidity (HTHH) conditions increase plant susceptibility to a variety of diseases, including bacterial wilt in solanaceous plants. Some solanaceous plant cultivars have evolved mechanisms to activate HTHH-specific immunity to cope with bacterial wilt disease. However, the underlying mechanisms remain poorly understood. Here we find that CaKAN3 and CaHSF8 upregulate and physically interact with each other in nuclei under HTHH conditions without inoculation or early after inoculation with R. solanacearum in pepper. Consequently, CaKAN3 and CaHSF8 synergistically confer immunity against R. solanacearum via activating a subset of NLRs which initiates immune signaling upon perception of unidentified pathogen effectors. Intriguingly, when HTHH conditions are prolonged without pathogen attack or the temperature goes higher, CaHSF8 no longer interacts with CaKAN3. Instead, it directly upregulates a subset of HSP genes thus activating thermotolerance. Our findings highlight mechanisms controlling context-specific activation of high-temperature-specific pepper immunity and thermotolerance mediated by differential CaKAN3-CaHSF8 associations.

Suggested Citation

  • Sheng Yang & Weiwei Cai & Ruijie Wu & Yu Huang & Qiaoling Lu & Hui Wang & Xueying Huang & Yapeng Zhang & Qing Wu & Xingge Cheng & Meiyun Wan & Jingang Lv & Qian Liu & Xiang Zheng & Shaoliang Mou & Dey, 2023. "Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40251-8
    DOI: 10.1038/s41467-023-40251-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40251-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40251-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Chen & Yanxiao Zhao & Xuanjie Luo & Hao Hong & Tongqing Yang & Shen Huang & Chunli Wang & Hongyu Chen & Xin Qian & Mingfeng Feng & Zhengqiang Chen & Yongxin Dong & Zhenchuan Ma & Jia Li & Min Zhu, 2023. "NLR surveillance of pathogen interference with hormone receptors induces immunity," Nature, Nature, vol. 613(7942), pages 145-152, January.
    2. Cheng Cheng & Xiquan Gao & Baomin Feng & Jen Sheen & Libo Shan & Ping He, 2013. "Plant immune response to pathogens differs with changing temperatures," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    3. Jong Hum Kim & Christian Danve M. Castroverde & Shuai Huang & Chao Li & Richard Hilleary & Adam Seroka & Reza Sohrabi & Diana Medina-Yerena & Bethany Huot & Jie Wang & Kinya Nomura & Sharon K. Marr & , 2022. "Increasing the resilience of plant immunity to a warming climate," Nature, Nature, vol. 607(7918), pages 339-344, July.
    4. Jing Chen & Yanxiao Zhao & Xuanjie Luo & Hao Hong & Tongqing Yang & Shen Huang & Chunli Wang & Hongyu Chen & Xin Qian & Mingfeng Feng & Zhengqiang Chen & Yongxin Dong & Zhenchuan Ma & Jia Li & Min Zhu, 2023. "Author Correction: NLR surveillance of pathogen interference with hormone receptors induces immunity," Nature, Nature, vol. 614(7946), pages 16-16, February.
    5. Randall A. Kerstetter & Krista Bollman & R. Alexandra Taylor & Kirsten Bomblies & R. Scott Poethig, 2001. "KANADI regulates organ polarity in Arabidopsis," Nature, Nature, vol. 411(6838), pages 706-709, June.
    6. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen Huang & Chunli Wang & Zixuan Ding & Yaqian Zhao & Jing Dai & Jia Li & Haining Huang & Tongkai Wang & Min Zhu & Mingfeng Feng & Yinghua Ji & Zhongkai Zhang & Xiaorong Tao, 2024. "A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Xueting Gu & Fuyan Si & Zhengxiang Feng & Shunjie Li & Di Liang & Pei Yang & Chao Yang & Bin Yan & Jun Tang & Yu Yang & Tai Li & Lin Li & Jinling Zhou & Ji Li & Lili Feng & Ji-Yun Liu & Yuanzhu Yang &, 2023. "The OsSGS3-tasiRNA-OsARF3 module orchestrates abiotic-biotic stress response trade-off in rice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    4. Rongrong Zhang & Yu Wu & Xiangru Qu & Wenjuan Yang & Qin Wu & Lin Huang & Qiantao Jiang & Jian Ma & Yazhou Zhang & Pengfei Qi & Guoyue Chen & Yunfeng Jiang & Youliang Zheng & Xiaojie Wang & Yuming Wei, 2024. "The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    6. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    7. Conner J. Rogan & Yin-Yuin Pang & Sophie D. Mathews & Sydney E. Turner & Alexandra J. Weisberg & Silke Lehmann & Doris Rentsch & Jeffrey C. Anderson, 2024. "Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Md Mijanur Rahman Rajib & Kuikui Li & Md Saikat Hossain Bhuiyan & Wenxia Wang & Jin Gao & Heng Yin, 2024. "Konjac Glucomannan Oligosaccharides (KGMOS) Confers Innate Immunity against Phytophthora nicotianae in Tobacco," Agriculture, MDPI, vol. 14(8), pages 1-17, August.
    9. Matheus Thomas Kuska & Jan Behmann & Mahsa Namini & Erich-Christian Oerke & Ulrike Steiner & Anne-Katrin Mahlein, 2019. "Discovering coherency of specific gene expression and optical reflectance properties of barley genotypes differing for resistance reactions against powdery mildew," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-20, March.
    10. Gelsomina Manganiello & Nicola Nicastro & Luciano Ortenzi & Federico Pallottino & Corrado Costa & Catello Pane, 2024. "Trichoderma Biocontrol Performances against Baby-Lettuce Fusarium Wilt Surveyed by Hyperspectral Imaging-Based Machine Learning and Infrared Thermography," Agriculture, MDPI, vol. 14(2), pages 1-18, February.
    11. Gaële Lajeunesse & Charles Roussin-Léveillée & Sophie Boutin & Élodie Fortin & Isabelle Laforest-Lapointe & Peter Moffett, 2023. "Light prevents pathogen-induced aqueous microenvironments via potentiation of salicylic acid signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Fabien Lonjon & Yan Lai & Nasrin Askari & Niharikaa Aiyar & Cedoljub Bundalovic-Torma & Bradley Laflamme & Pauline W. Wang & Darrell Desveaux & David S. Guttman, 2024. "The effector-triggered immunity landscape of tomato against Pseudomonas syringae," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Ana Cruz-Silva & Andreia Figueiredo & Mónica Sebastiana, 2021. "First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    14. Manish Kumar & Amandeep Brar & Monika Yadav & Aakash Chawade & V. Vivekanand & Nidhi Pareek, 2018. "Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens," Agriculture, MDPI, vol. 8(7), pages 1-12, June.
    15. Costas Bouyioukos & Matthew J Moscou & Nicolas Champouret & Inmaculada Hernández-Pinzón & Eric R Ward & Brande B H Wulff, 2013. "Characterisation and Analysis of the Aegilops sharonensis Transcriptome, a Wild Relative of Wheat in the Sitopsis Section," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-1, August.
    16. Carmen Santos & Susana Trindade Leitão, 2023. "The Exceptionally Large Genomes of the Fabeae Tribe: Comparative Genomics and Applications in Abiotic and Biotic Stress Studies," Agriculture, MDPI, vol. 14(1), pages 1-21, December.
    17. Jan Bettgenhaeuser & Inmaculada Hernández-Pinzón & Andrew M. Dawson & Matthew Gardiner & Phon Green & Jodie Taylor & Matthew Smoker & John N. Ferguson & Peter Emmrich & Amelia Hubbard & Rosemary Bay, 2021. "The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    18. Lyudmila Plotnikova & Violetta Pozherukova & Valeria Knaub & Yuryi Kashuba, 2022. "What Was the Reason for the Durable Effect of Sr31 against Wheat Stem Rust?," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    19. Jianghua Cai & Sayantan Panda & Yana Kazachkova & Eden Amzallag & Zhengguo Li & Sagit Meir & Ilana Rogachev & Asaph Aharoni, 2024. "A NAC triad modulates plant immunity by negatively regulating N-hydroxy pipecolic acid biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Beatriz Val-Torregrosa & Mireia Bundó & Blanca San Segundo, 2021. "Crosstalk between Nutrient Signalling Pathways and Immune Responses in Rice," Agriculture, MDPI, vol. 11(8), pages 1-21, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40251-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.