IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40083-6.html
   My bibliography  Save this article

TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing

Author

Listed:
  • Feng Wang

    (Children’s Hospital of Philadelphia)

  • Yang Xu

    (Children’s Hospital of Philadelphia
    University of Pennsylvania)

  • Robert Wang

    (Children’s Hospital of Philadelphia
    University of Pennsylvania)

  • Beatrice Zhang

    (Children’s Hospital of Philadelphia)

  • Noah Smith

    (Children’s Hospital of Philadelphia)

  • Amber Notaro

    (Children’s Hospital of Philadelphia)

  • Samantha Gaerlan

    (Children’s Hospital of Philadelphia)

  • Eric Kutschera

    (Children’s Hospital of Philadelphia)

  • Kathryn E. Kadash-Edmondson

    (Children’s Hospital of Philadelphia)

  • Yi Xing

    (Children’s Hospital of Philadelphia
    University of Pennsylvania Perelman School of Medicine
    Children’s Hospital of Philadelphia)

  • Lan Lin

    (University of Pennsylvania Perelman School of Medicine
    Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia)

Abstract

Long-read RNA sequencing (RNA-seq) is a powerful technology for transcriptome analysis, but the relatively low throughput of current long-read sequencing platforms limits transcript coverage. One strategy for overcoming this bottleneck is targeted long-read RNA-seq for preselected gene panels. We present TEQUILA-seq, a versatile, easy-to-implement, and low-cost method for targeted long-read RNA-seq utilizing isothermally linear-amplified capture probes. When performed on the Oxford nanopore platform with multiple gene panels of varying sizes, TEQUILA-seq consistently and substantially enriches transcript coverage while preserving transcript quantification. We profile full-length transcript isoforms of 468 actionable cancer genes across 40 representative breast cancer cell lines. We identify transcript isoforms enriched in specific subtypes and discover novel transcript isoforms in extensively studied cancer genes such as TP53. Among cancer genes, tumor suppressor genes (TSGs) are significantly enriched for aberrant transcript isoforms targeted for degradation via mRNA nonsense-mediated decay, revealing a common RNA-associated mechanism for TSG inactivation. TEQUILA-seq reduces the per-reaction cost of targeted capture by 2-3 orders of magnitude, as compared to a standard commercial solution. TEQUILA-seq can be broadly used for targeted sequencing of full-length transcripts in diverse biomedical research settings.

Suggested Citation

  • Feng Wang & Yang Xu & Robert Wang & Beatrice Zhang & Noah Smith & Amber Notaro & Samantha Gaerlan & Eric Kutschera & Kathryn E. Kadash-Edmondson & Yi Xing & Lan Lin, 2023. "TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40083-6
    DOI: 10.1038/s41467-023-40083-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40083-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40083-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erin E. Heyer & Ira W. Deveson & Danson Wooi & Christina I. Selinger & Ruth J. Lyons & Vanessa M. Hayes & Sandra A. O’Toole & Mandy L. Ballinger & Devinder Gill & David M. Thomas & Tim R. Mercer & Jam, 2019. "Diagnosis of fusion genes using targeted RNA sequencing," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Christopher E. Duymich & Jessica Charlet & Xiaojing Yang & Peter A. Jones & Gangning Liang, 2016. "DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    3. Ina Rhee & Kurtis E. Bachman & Ben Ho Park & Kam-Wing Jair & Ray-Whay Chiu Yen & Kornel E. Schuebel & Hengmi Cui & Andrew P. Feinberg & Christoph Lengauer & Kenneth W. Kinzler & Stephen B. Baylin & Be, 2002. "DNMT1 and DNMT3b cooperate to silence genes in human cancer cells," Nature, Nature, vol. 416(6880), pages 552-556, April.
    4. N. Shukla & M. F. Levine & G. Gundem & D. Domenico & B. Spitzer & N. Bouvier & J. E. Arango-Ossa & D. Glodzik & J. S. Medina-Martínez & U. Bhanot & J. Gutiérrez-Abril & Y. Zhou & E. Fiala & E. Stockfi, 2022. "Feasibility of whole genome and transcriptome profiling in pediatric and young adult cancers," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Mahmoud Ghandi & Franklin W. Huang & Judit Jané-Valbuena & Gregory V. Kryukov & Christopher C. Lo & E. Robert McDonald & Jordi Barretina & Ellen T. Gelfand & Craig M. Bielski & Haoxin Li & Kevin Hu & , 2019. "Next-generation characterization of the Cancer Cell Line Encyclopedia," Nature, Nature, vol. 569(7757), pages 503-508, May.
    6. Eric T. Wang & Rickard Sandberg & Shujun Luo & Irina Khrebtukova & Lu Zhang & Christine Mayr & Stephen F. Kingsmore & Gary P. Schroth & Christopher B. Burge, 2008. "Alternative isoform regulation in human tissue transcriptomes," Nature, Nature, vol. 456(7221), pages 470-476, November.
    7. Timothy W. Nilsen & Brenton R. Graveley, 2010. "Expansion of the eukaryotic proteome by alternative splicing," Nature, Nature, vol. 463(7280), pages 457-463, January.
    8. Hanae Sato & Robert H. Singer, 2021. "Cellular variability of nonsense-mediated mRNA decay," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Gloria M. Sheynkman & Katharine S. Tuttle & Florent Laval & Elizabeth Tseng & Jason G. Underwood & Liang Yu & Da Dong & Melissa L. Smith & Robert Sebra & Luc Willems & Tong Hao & Michael A. Calderwood, 2020. "ORF Capture-Seq as a versatile method for targeted identification of full-length isoforms," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    10. Liana F. Lareau & Maki Inada & Richard E. Green & Jordan C. Wengrod & Steven E. Brenner, 2007. "Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements," Nature, Nature, vol. 446(7138), pages 926-929, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Hu & Yangjun Wu & Qili Shi & Jingni Wu & Deping Kong & Xiaohua Wu & Xianghuo He & Teng Liu & Shengli Li, 2022. "Systematic characterization of cancer transcriptome at transcript resolution," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Zhiyi Qin & Xuegong Zhang, 2017. "The identification of switch-like alternative splicing exons among multiple samples with RNA-Seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-12, May.
    3. Yocelyn Recinos & Dmytro Ustianenko & Yow-Tyng Yeh & Xiaojian Wang & Martin Jacko & Lekha V. Yesantharao & Qiyang Wu & Chaolin Zhang, 2024. "CRISPR-dCas13d-based deep screening of proximal and distal splicing-regulatory elements," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Zhiping Zhang & Bongmin Bae & Winston H. Cuddleston & Pedro Miura, 2023. "Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Gustavo Glusman & Juan Caballero & Max Robinson & Burak Kutlu & Leroy Hood, 2013. "Optimal Scaling of Digital Transcriptomes," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-12, November.
    6. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    7. Timofey A. Karginov & Antoine Ménoret & Anthony T. Vella, 2022. "Optimal CD8+ T cell effector function requires costimulation-induced RNA-binding proteins that reprogram the transcript isoform landscape," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Nadege Gitego & Bogos Agianian & Oi Wei Mak & Vasantha Kumar MV & Emily H. Cheng & Evripidis Gavathiotis, 2023. "Chemical modulation of cytosolic BAX homodimer potentiates BAX activation and apoptosis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Jun Inamo & Akari Suzuki & Mahoko Takahashi Ueda & Kensuke Yamaguchi & Hiroshi Nishida & Katsuya Suzuki & Yuko Kaneko & Tsutomu Takeuchi & Hiroaki Hatano & Kazuyoshi Ishigaki & Yasushi Ishihama & Kazu, 2024. "Long-read sequencing for 29 immune cell subsets reveals disease-linked isoforms," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Manish Kumar & David Molkentine & Jessica Molkentine & Kathleen Bridges & Tongxin Xie & Liangpeng Yang & Andrew Hefner & Meng Gao & Reshub Bahri & Annika Dhawan & Mitchell J. Frederick & Sahil Seth & , 2021. "Inhibition of histone acetyltransferase function radiosensitizes CREBBP/EP300 mutants via repression of homologous recombination, potentially targeting a gain of function," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    11. Antonella Fazio & Dora Bordoni & Jan W. P. Kuiper & Saskia Weber-Stiehl & Stephanie T. Stengel & Philipp Arnold & David Ellinghaus & Go Ito & Florian Tran & Berith Messner & Anna Henning & Joana P. Be, 2022. "DNA methyltransferase 3A controls intestinal epithelial barrier function and regeneration in the colon," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Elizabeth A. Werren & Geneva R. LaForce & Anshika Srivastava & Delia R. Perillo & Shaokun Li & Katherine Johnson & Safa Baris & Brandon Berger & Samantha L. Regan & Christian D. Pfennig & Sonja Munnik, 2024. "TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    13. Patricia González-Rodríguez & Daniel J. Klionsky & Bertrand Joseph, 2022. "Autophagy regulation by RNA alternative splicing and implications in human diseases," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. C. Megan Young & Laurent Beziaud & Pierre Dessen & Angela Madurga Alonso & Albert Santamaria-Martínez & Joerg Huelsken, 2023. "Metabolic dependencies of metastasis-initiating cells in female breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Miklos Csuros & Igor B Rogozin & Eugene V Koonin, 2011. "A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-9, September.
    16. Nysia I George & John F Bowyer & Nathaniel M Crabtree & Ching-Wei Chang, 2015. "An Iterative Leave-One-Out Approach to Outlier Detection in RNA-Seq Data," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-10, June.
    17. Miquel Anglada-Girotto & Ludovica Ciampi & Sophie Bonnal & Sarah A. Head & Samuel Miravet-Verde & Luis Serrano, 2024. "In silico RNA isoform screening to identify potential cancer driver exons with therapeutic applications," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    18. Ilias Georgakopoulos-Soares & Guillermo E. Parada & Hei Yuen Wong & Ragini Medhi & Giulia Furlan & Roberto Munita & Eric A. Miska & Chun Kit Kwok & Martin Hemberg, 2022. "Alternative splicing modulation by G-quadruplexes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Fei Li & Yizhe Wang & Inah Hwang & Ja-Young Jang & Libo Xu & Zhong Deng & Eun Young Yu & Yiming Cai & Caizhi Wu & Zhenbo Han & Yu-Han Huang & Xiangao Huang & Ling Zhang & Jun Yao & Neal F. Lue & Paul , 2023. "Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Areum Han & Peter Stoilov & Anthony J Linares & Yu Zhou & Xiang-Dong Fu & Douglas L Black, 2014. "De Novo Prediction of PTBP1 Binding and Splicing Targets Reveals Unexpected Features of Its RNA Recognition and Function," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40083-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.