IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p854-865.html
   My bibliography  Save this article

Estimating cell type composition using isoform expression one gene at a time

Author

Listed:
  • Hillary M. Heiling
  • Douglas R. Wilson
  • Naim U. Rashid
  • Wei Sun
  • Joseph G. Ibrahim

Abstract

Human tissue samples are often mixtures of heterogeneous cell types, which can confound the analyses of gene expression data derived from such tissues. The cell type composition of a tissue sample may itself be of interest and is needed for proper analysis of differential gene expression. A variety of computational methods have been developed to estimate cell type proportions using gene‐level expression data. However, RNA isoforms can also be differentially expressed across cell types, and isoform‐level expression could be equally or more informative for determining cell type origin than gene‐level expression. We propose a new computational method, IsoDeconvMM, which estimates cell type fractions using isoform‐level gene expression data. A novel and useful feature of IsoDeconvMM is that it can estimate cell type proportions using only a single gene, though in practice we recommend aggregating estimates of a few dozen genes to obtain more accurate results. We demonstrate the performance of IsoDeconvMM using a unique data set with cell type–specific RNA‐seq data across more than 135 individuals. This data set allows us to evaluate different methods given the biological variation of cell type–specific gene expression data across individuals. We further complement this analysis with additional simulations.

Suggested Citation

  • Hillary M. Heiling & Douglas R. Wilson & Naim U. Rashid & Wei Sun & Joseph G. Ibrahim, 2023. "Estimating cell type composition using isoform expression one gene at a time," Biometrics, The International Biometric Society, vol. 79(2), pages 854-865, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:854-865
    DOI: 10.1111/biom.13614
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13614
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neelroop N. Parikshak & Vivek Swarup & T. Grant Belgard & Manuel Irimia & Gokul Ramaswami & Michael J. Gandal & Christopher Hartl & Virpi Leppa & Luis de la Torre Ubieta & Jerry Huang & Jennifer K. Lo, 2016. "Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism," Nature, Nature, vol. 540(7633), pages 423-427, December.
    2. Wei Sun & Yufeng Liu & James J. Crowley & Ting-Huei Chen & Hua Zhou & Haitao Chu & Shunping Huang & Pei-Fen Kuan & Yuan Li & Darla Miller & Ginger Shaw & Yichao Wu & Vasyl Zhabotynsky & Leonard McMill, 2015. "IsoDOT Detects Differential RNA-Isoform Expression/Usage With Respect to a Categorical or Continuous Covariate With High Sensitivity and Specificity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 975-986, September.
    3. Eric T. Wang & Rickard Sandberg & Shujun Luo & Irina Khrebtukova & Lu Zhang & Christine Mayr & Stephen F. Kingsmore & Gary P. Schroth & Christopher B. Burge, 2008. "Alternative isoform regulation in human tissue transcriptomes," Nature, Nature, vol. 456(7221), pages 470-476, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elaine T. Lim & Yingleong Chan & Pepper Dawes & Xiaoge Guo & Serkan Erdin & Derek J. C. Tai & Songlei Liu & Julia M. Reichert & Mannix J. Burns & Ying Kai Chan & Jessica J. Chiang & Katharina Meyer & , 2022. "Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Gustavo Glusman & Juan Caballero & Max Robinson & Burak Kutlu & Leroy Hood, 2013. "Optimal Scaling of Digital Transcriptomes," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-12, November.
    3. Wei Sun & Yufeng Liu & James J. Crowley & Ting-Huei Chen & Hua Zhou & Haitao Chu & Shunping Huang & Pei-Fen Kuan & Yuan Li & Darla Miller & Ginger Shaw & Yichao Wu & Vasyl Zhabotynsky & Leonard McMill, 2015. "IsoDOT Detects Differential RNA-Isoform Expression/Usage With Respect to a Categorical or Continuous Covariate With High Sensitivity and Specificity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 975-986, September.
    4. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    5. Michelle M. Kameda-Smith & Helen Zhu & En-Ching Luo & Yujin Suk & Agata Xella & Brian Yee & Chirayu Chokshi & Sansi Xing & Frederick Tan & Raymond G. Fox & Ashley A. Adile & David Bakhshinyan & Kevin , 2022. "Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Justin Bo-Kai Hsu & Neil Arvin Bretaña & Tzong-Yi Lee & Hsien-Da Huang, 2011. "Incorporating Evolutionary Information and Functional Domains for Identifying RNA Splicing Factors in Humans," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-11, November.
    7. Jun Inamo & Akari Suzuki & Mahoko Takahashi Ueda & Kensuke Yamaguchi & Hiroshi Nishida & Katsuya Suzuki & Yuko Kaneko & Tsutomu Takeuchi & Hiroaki Hatano & Kazuyoshi Ishigaki & Yasushi Ishihama & Kazu, 2024. "Long-read sequencing for 29 immune cell subsets reveals disease-linked isoforms," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Iva Salamon & Yongkyu Park & Terezija Miškić & Janja Kopić & Paul Matteson & Nicholas F. Page & Alfonso Roque & Geoffrey W. McAuliffe & John Favate & Marta Garcia-Forn & Premal Shah & Miloš Judaš & Ja, 2023. "Celf4 controls mRNA translation underlying synaptic development in the prenatal mammalian neocortex," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Feng Wang & Yang Xu & Robert Wang & Beatrice Zhang & Noah Smith & Amber Notaro & Samantha Gaerlan & Eric Kutschera & Kathryn E. Kadash-Edmondson & Yi Xing & Lan Lin, 2023. "TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Elizabeth A. Werren & Geneva R. LaForce & Anshika Srivastava & Delia R. Perillo & Shaokun Li & Katherine Johnson & Safa Baris & Brandon Berger & Samantha L. Regan & Christian D. Pfennig & Sonja Munnik, 2024. "TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    11. Patricia González-Rodríguez & Daniel J. Klionsky & Bertrand Joseph, 2022. "Autophagy regulation by RNA alternative splicing and implications in human diseases," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Stacey D Wagner & Adam J Struck & Riti Gupta & Dylan R Farnsworth & Amy E Mahady & Katy Eichinger & Charles A Thornton & Eric T Wang & J Andrew Berglund, 2016. "Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy," PLOS Genetics, Public Library of Science, vol. 12(9), pages 1-24, September.
    13. Miklos Csuros & Igor B Rogozin & Eugene V Koonin, 2011. "A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-9, September.
    14. Nysia I George & John F Bowyer & Nathaniel M Crabtree & Ching-Wei Chang, 2015. "An Iterative Leave-One-Out Approach to Outlier Detection in RNA-Seq Data," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-10, June.
    15. Alberto Riva & Graziano Pesole, 2009. "A Unique, Consistent Identifier for Alternatively Spliced Transcript Variants," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-10, October.
    16. Liguo Wang & Yuanxin Xi & Jun Yu & Liping Dong & Laising Yen & Wei Li, 2010. "A Statistical Method for the Detection of Alternative Splicing Using RNA-Seq," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-8, January.
    17. Christopher G Bell & Sarah Finer & Cecilia M Lindgren & Gareth A Wilson & Vardhman K Rakyan & Andrew E Teschendorff & Pelin Akan & Elia Stupka & Thomas A Down & Inga Prokopenko & Ian M Morison & Jonat, 2010. "Integrated Genetic and Epigenetic Analysis Identifies Haplotype-Specific Methylation in the FTO Type 2 Diabetes and Obesity Susceptibility Locus," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-12, November.
    18. Ilias Georgakopoulos-Soares & Guillermo E. Parada & Hei Yuen Wong & Ragini Medhi & Giulia Furlan & Roberto Munita & Eric A. Miska & Chun Kit Kwok & Martin Hemberg, 2022. "Alternative splicing modulation by G-quadruplexes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Areum Han & Peter Stoilov & Anthony J Linares & Yu Zhou & Xiang-Dong Fu & Douglas L Black, 2014. "De Novo Prediction of PTBP1 Binding and Splicing Targets Reveals Unexpected Features of Its RNA Recognition and Function," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-18, January.
    20. Judith A Potashkin & Jose A Santiago & Bernard M Ravina & Arthur Watts & Alexey A Leontovich, 2012. "Biosignatures for Parkinson’s Disease and Atypical Parkinsonian Disorders Patients," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-13, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:854-865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.