IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39993-2.html
   My bibliography  Save this article

Sequencing trait-associated mutations to clone wheat rust-resistance gene YrNAM

Author

Listed:
  • Fei Ni

    (Shandong Agricultural University)

  • Yanyan Zheng

    (Shandong Agricultural University
    Zhoucun District Agricultural Technology Service Center)

  • Xiaoke Liu

    (Shandong Agricultural University)

  • Yang Yu

    (Shandong Agricultural University)

  • Guangqiang Zhang

    (Shandong Agricultural University
    Heze University)

  • Lynn Epstein

    (University of California)

  • Xue Mao

    (Shandong Agricultural University)

  • Jingzheng Wu

    (Shandong Agricultural University
    Zhejiang Pharmaceutical University)

  • Cuiling Yuan

    (Shandong Agricultural University
    Shandong Peanut Research Institute)

  • Bo Lv

    (Shandong Agricultural University)

  • Haixia Yu

    (Shandong Agricultural University)

  • Jinlong Li

    (Shandong Agricultural University
    China Agricultural University)

  • Qi Zhao

    (Shandong Agricultural University)

  • Qiyu Yang

    (Shandong Agricultural University)

  • Jiajun Liu

    (Shandong Agricultural University)

  • Juan Qi

    (Shandong Agricultural University)

  • Daolin Fu

    (Shandong Agricultural University
    Spring Valley Agriscience Co., Ltd.)

  • Jiajie Wu

    (Shandong Agricultural University)

Abstract

Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), can significantly affect wheat production. Cloning resistance genes is critical for efficient and effective breeding of stripe rust resistant wheat cultivars. One resistance gene (Yr10CG) underlying the Pst resistance locus Yr10 has been cloned. However, following haplotype and linkage analyses indicate the presence of additional Pst resistance gene(s) underlying/near Yr10 locus. Here, we report the cloning of the Pst resistance gene YrNAM in this region using the method of sequencing trait-associated mutations (STAM). YrNAM encodes a non-canonical resistance protein with a NAM domain and a ZnF-BED domain. We show that both domains are required for resistance. Transgenic wheat harboring YrNAM gene driven by its endogenous promoter confers resistance to stripe rust races CYR32 and CYR33. YrNAM is an ancient gene and present in wild wheat species Aegilops longissima and Ae. sharonensis; however, it is absent in most wheat cultivars, which indicates its breeding value.

Suggested Citation

  • Fei Ni & Yanyan Zheng & Xiaoke Liu & Yang Yu & Guangqiang Zhang & Lynn Epstein & Xue Mao & Jingzheng Wu & Cuiling Yuan & Bo Lv & Haixia Yu & Jinlong Li & Qi Zhao & Qiyu Yang & Jiajun Liu & Juan Qi & D, 2023. "Sequencing trait-associated mutations to clone wheat rust-resistance gene YrNAM," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39993-2
    DOI: 10.1038/s41467-023-39993-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39993-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39993-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianping Zhang & Timothy C. Hewitt & Willem H. P. Boshoff & Ian Dundas & Narayana Upadhyaya & Jianbo Li & Mehran Patpour & Sutha Chandramohan & Zacharias A. Pretorius & Mogens Hovmøller & Wendelin Sch, 2021. "A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Guotai Yu & Oadi Matny & Nicolas Champouret & Burkhard Steuernagel & Matthew J. Moscou & Inmaculada Hernández-Pinzón & Phon Green & Sadiye Hayta & Mark Smedley & Wendy Harwood & Ngonidzashe Kangara & , 2022. "Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katherine Dibley & Matthias Jost & Robert McIntosh & Evans Lagudah & Peng Zhang, 2024. "The wheat stripe rust resistance gene YrNAM is Yr10," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    2. Huagang He & Zhaozhao Chen & Renchun Fan & Jie Zhang & Shanying Zhu & Jiale Wang & Qianyuan Zhang & Anli Gao & Shuangjun Gong & Lu Zhang & Yanan Li & Yitong Zhao & Simon G. Krattinger & Qian-Hua Shen , 2024. "A kinase fusion protein from Aegilops longissima confers resistance to wheat powdery mildew," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Huanhuan Li & Wenqiang Men & Chao Ma & Qianwen Liu & Zhenjie Dong & Xiubin Tian & Chaoli Wang & Cheng Liu & Harsimardeep S. Gill & Pengtao Ma & Zhibin Zhang & Bao Liu & Yue Zhao & Sunish K. Sehgal & W, 2024. "Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianping Zhang & Jayaveeramuthu Nirmala & Shisheng Chen & Matthias Jost & Burkhard Steuernagel & Mirka Karafiatova & Tim Hewitt & Hongna Li & Erena Edae & Keshav Sharma & Sami Hoxha & Dhara Bhatt & Re, 2023. "Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus SR9," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Huagang He & Zhaozhao Chen & Renchun Fan & Jie Zhang & Shanying Zhu & Jiale Wang & Qianyuan Zhang & Anli Gao & Shuangjun Gong & Lu Zhang & Yanan Li & Yitong Zhao & Simon G. Krattinger & Qian-Hua Shen , 2024. "A kinase fusion protein from Aegilops longissima confers resistance to wheat powdery mildew," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Huanhuan Li & Wenqiang Men & Chao Ma & Qianwen Liu & Zhenjie Dong & Xiubin Tian & Chaoli Wang & Cheng Liu & Harsimardeep S. Gill & Pengtao Ma & Zhibin Zhang & Bao Liu & Yue Zhao & Sunish K. Sehgal & W, 2024. "Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Miaomiao Li & Huaizhi Zhang & Huixin Xiao & Keyu Zhu & Wenqi Shi & Dong Zhang & Yong Wang & Lijun Yang & Qiuhong Wu & Jingzhong Xie & Yongxing Chen & Dan Qiu & Guanghao Guo & Ping Lu & Beibei Li & Lei, 2024. "A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Guotai Yu & Oadi Matny & Nicolas Champouret & Burkhard Steuernagel & Matthew J. Moscou & Inmaculada Hernández-Pinzón & Phon Green & Sadiye Hayta & Mark Smedley & Wendy Harwood & Ngonidzashe Kangara & , 2022. "Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Yue Zhao & Zhenjie Dong & Jingnan Miao & Qianwen Liu & Chao Ma & Xiubin Tian & Jinqiu He & Huihui Bi & Wen Yao & Tao Li & Harsimardeep S. Gill & Zhibin Zhang & Aizhong Cao & Bao Liu & Huanhuan Li & Su, 2024. "Pm57 from Aegilops searsii encodes a tandem kinase protein and confers wheat powdery mildew resistance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39993-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.