IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39961-w.html
   My bibliography  Save this article

Structural basis for specific RNA recognition by the alternative splicing factor RBM5

Author

Listed:
  • Komal Soni

    (Institute of Structural Biology
    Bavarian NMR Center)

  • Pravin Kumar Ankush Jagtap

    (Institute of Structural Biology
    Bavarian NMR Center)

  • Santiago Martínez-Lumbreras

    (Institute of Structural Biology
    Bavarian NMR Center)

  • Sophie Bonnal

    (Barcelona Institute of Science and Technology and Universitat Pompeu Fabra)

  • Arie Geerlof

    (Institute of Structural Biology)

  • Ralf Stehle

    (Institute of Structural Biology
    Bavarian NMR Center)

  • Bernd Simon

    (European Molecular Biology Laboratory)

  • Juan Valcárcel

    (Barcelona Institute of Science and Technology and Universitat Pompeu Fabra
    Institució Catalana de Recerca i Estudis Avançats)

  • Michael Sattler

    (Institute of Structural Biology
    Bavarian NMR Center)

Abstract

The RNA-binding motif protein RBM5 belongs to a family of multi-domain RNA binding proteins that regulate alternative splicing of genes important for apoptosis and cell proliferation and have been implicated in cancer. RBM5 harbors structural modules for RNA recognition, such as RRM domains and a Zn finger, and protein-protein interactions such as an OCRE domain. Here, we characterize binding of the RBM5 RRM1-ZnF1-RRM2 domains to cis-regulatory RNA elements. A structure of the RRM1-ZnF1 region in complex with RNA shows how the tandem domains cooperate to sandwich target RNA and specifically recognize a GG dinucleotide in a non-canonical fashion. While the RRM1-ZnF1 domains act as a single structural module, RRM2 is connected by a flexible linker and tumbles independently. However, all three domains participate in RNA binding and adopt a closed architecture upon RNA binding. Our data highlight how cooperativity and conformational modularity of multiple RNA binding domains enable the recognition of distinct RNA motifs, thereby contributing to the regulation of alternative splicing. Remarkably, we observe surprising differences in coupling of the RNA binding domains between the closely related homologs RBM5 and RBM10.

Suggested Citation

  • Komal Soni & Pravin Kumar Ankush Jagtap & Santiago Martínez-Lumbreras & Sophie Bonnal & Arie Geerlof & Ralf Stehle & Bernd Simon & Juan Valcárcel & Michael Sattler, 2023. "Structural basis for specific RNA recognition by the alternative splicing factor RBM5," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39961-w
    DOI: 10.1038/s41467-023-39961-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39961-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39961-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Debashish Ray & Hilal Kazan & Kate B. Cook & Matthew T. Weirauch & Hamed S. Najafabadi & Xiao Li & Serge Gueroussov & Mihai Albu & Hong Zheng & Ally Yang & Hong Na & Manuel Irimia & Leah H. Matzat & R, 2013. "A compendium of RNA-binding motifs for decoding gene regulation," Nature, Nature, vol. 499(7457), pages 172-177, July.
    2. Timothy W. Nilsen & Brenton R. Graveley, 2010. "Expansion of the eukaryotic proteome by alternative splicing," Nature, Nature, vol. 463(7280), pages 457-463, January.
    3. Tim Schneider & Lee-Hsueh Hung & Masood Aziz & Anna Wilmen & Stephanie Thaum & Jacqueline Wagner & Robert Janowski & Simon Müller & Silke Schreiner & Peter Friedhoff & Stefan Hüttelmaier & Dierk Niess, 2019. "Combinatorial recognition of clustered RNA elements by the multidomain RNA-binding protein IMP3," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    4. Cameron D. Mackereth & Tobias Madl & Sophie Bonnal & Bernd Simon & Katia Zanier & Alexander Gasch & Vladimir Rybin & Juan Valcárcel & Michael Sattler, 2011. "Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF," Nature, Nature, vol. 475(7356), pages 408-411, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huijuan Feng & Xiang-Jun Lu & Suvrajit Maji & Linxi Liu & Dmytro Ustianenko & Noam D. Rudnick & Chaolin Zhang, 2024. "Structure-based prediction and characterization of photo-crosslinking in native protein–RNA complexes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Xuan Ye & Wen Yang & Soon Yi & Yanan Zhao & Gabriele Varani & Eckhard Jankowsky & Fan Yang, 2023. "Two distinct binding modes provide the RNA-binding protein RbFox with extraordinary sequence specificity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Shijia Zhu & Guohua Wang & Bo Liu & Yadong Wang, 2013. "Modeling Exon Expression Using Histone Modifications," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-15, June.
    4. Aidan M. Fenix & Yuichiro Miyaoka & Alessandro Bertero & Steven M. Blue & Matthew J. Spindler & Kenneth K. B. Tan & Juan A. Perez-Bermejo & Amanda H. Chan & Steven J. Mayerl & Trieu D. Nguyen & Caitli, 2021. "Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Seungjae Lee & Yen-Chung Chen & Austin E. Gillen & J. Matthew Taliaferro & Bart Deplancke & Hongjie Li & Eric C. Lai, 2022. "Diverse cell-specific patterns of alternative polyadenylation in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Deivid C. Rodrigues & Marat Mufteev & Kyoko E. Yuki & Ashrut Narula & Wei Wei & Alina Piekna & Jiajie Liu & Peter Pasceri & Olivia S. Rissland & Michael D. Wilson & James Ellis, 2023. "Buffering of transcription rate by mRNA half-life is a conserved feature of Rett syndrome models," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Seisuke Yamashita & Kozo Tomita, 2023. "Mechanism of U6 snRNA oligouridylation by human TUT1," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Shenglei Feng & Jinmei Li & Hui Wen & Kuan Liu & Yiqian Gui & Yujiao Wen & Xiaoli Wang & Shuiqiao Yuan, 2022. "hnRNPH1 recruits PTBP2 and SRSF3 to modulate alternative splicing in germ cells," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Christoph Sadée & Lauren D. Hagler & Winston R. Becker & Inga Jarmoskaite & Pavanapuresan P. Vaidyanathan & Sarah K. Denny & William J. Greenleaf & Daniel Herschlag, 2022. "A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Maya Ron & Igor Ulitsky, 2022. "Context-specific effects of sequence elements on subcellular localization of linear and circular RNAs," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Timofey A. Karginov & Antoine Ménoret & Anthony T. Vella, 2022. "Optimal CD8+ T cell effector function requires costimulation-induced RNA-binding proteins that reprogram the transcript isoform landscape," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Anna Knörlein & Chris P. Sarnowski & Tebbe Vries & Moritz Stoltz & Michael Götze & Ruedi Aebersold & Frédéric H.-T. Allain & Alexander Leitner & Jonathan Hall, 2022. "Nucleotide-amino acid π-stacking interactions initiate photo cross-linking in RNA-protein complexes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Feng Wang & Yang Xu & Robert Wang & Beatrice Zhang & Noah Smith & Amber Notaro & Samantha Gaerlan & Eric Kutschera & Kathryn E. Kadash-Edmondson & Yi Xing & Lan Lin, 2023. "TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Miquel Anglada-Girotto & Ludovica Ciampi & Sophie Bonnal & Sarah A. Head & Samuel Miravet-Verde & Luis Serrano, 2024. "In silico RNA isoform screening to identify potential cancer driver exons with therapeutic applications," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    15. Haili Shao & Jipeng Huang & Hui Wang & Guolei Wang & Xu Yang & Mei Cheng & Changjie Sun & Li Zou & Qin Yang & Dandan Zhang & Zhen Liu & Xuelong Jiang & Lei Shi & Peng Shi & Baowei Han & Baowei Jiao, 2024. "Fused in sarcoma (FUS) inhibits milk production efficiency in mammals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Siddharth Sethi & David Zhang & Sebastian Guelfi & Zhongbo Chen & Sonia Garcia-Ruiz & Emmanuel O. Olagbaju & Mina Ryten & Harpreet Saini & Juan A. Botia, 2022. "Leveraging omic features with F3UTER enables identification of unannotated 3’UTRs for synaptic genes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Diane Lefaudeux & Supriya Sen & Kevin Jiang & Alexander Hoffmann, 2022. "Kinetics of mRNA nuclear export regulate innate immune response gene expression," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Zhiyi Qin & Xuegong Zhang, 2017. "The identification of switch-like alternative splicing exons among multiple samples with RNA-Seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-12, May.
    19. Ariel Madrigal & Tianyuan Lu & Larisa M. Soto & Hamed S. Najafabadi, 2024. "A unified model for interpretable latent embedding of multi-sample, multi-condition single-cell data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Ulrike Zinnall & Miha Milek & Igor Minia & Carlos H. Vieira-Vieira & Simon Müller & Guido Mastrobuoni & Orsalia-Georgia Hazapis & Simone Giudice & David Schwefel & Nadine Bley & Franka Voigt & Jeffrey, 2022. "HDLBP binds ER-targeted mRNAs by multivalent interactions to promote protein synthesis of transmembrane and secreted proteins," Nature Communications, Nature, vol. 13(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39961-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.