IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30183-0.html
   My bibliography  Save this article

Context-specific effects of sequence elements on subcellular localization of linear and circular RNAs

Author

Listed:
  • Maya Ron

    (Weizmann Institute of Science)

  • Igor Ulitsky

    (Weizmann Institute of Science)

Abstract

Long RNAs vary extensively in their post-transcriptional fates, and this variation is attributed in part to short sequence elements. We used massively parallel RNA assays to study how sequences derived from noncoding RNAs influence the subcellular localization and stability of circular and linear RNAs, including spliced and unspliced forms. We find that the effects of sequence elements strongly depend on the host RNA context, with limited overlap between sequences that drive nuclear enrichment of linear and circular RNAs. Binding of specific RNA binding proteins underpins some of these differences—SRSF1 binding leads to nuclear enrichment of circular RNAs; SAFB binding is associated with nuclear enrichment of predominantly unspliced linear RNAs; and IGF2BP1 promotes export of linear spliced RNA molecules. The post-transcriptional fate of long RNAs is thus dictated by combinatorial contributions of specific sequence elements, of splicing, and of the presence of the terminal features unique to linear RNAs.

Suggested Citation

  • Maya Ron & Igor Ulitsky, 2022. "Context-specific effects of sequence elements on subcellular localization of linear and circular RNAs," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30183-0
    DOI: 10.1038/s41467-022-30183-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30183-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30183-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Memczak & Marvin Jens & Antigoni Elefsinioti & Francesca Torti & Janna Krueger & Agnieszka Rybak & Luisa Maier & Sebastian D. Mackowiak & Lea H. Gregersen & Mathias Munschauer & Alexander Lo, 2013. "Circular RNAs are a large class of animal RNAs with regulatory potency," Nature, Nature, vol. 495(7441), pages 333-338, March.
    2. Eric L. Nostrand & Peter Freese & Gabriel A. Pratt & Xiaofeng Wang & Xintao Wei & Rui Xiao & Steven M. Blue & Jia-Yu Chen & Neal A. L. Cody & Daniel Dominguez & Sara Olson & Balaji Sundararaman & Liju, 2020. "A large-scale binding and functional map of human RNA-binding proteins," Nature, Nature, vol. 583(7818), pages 711-719, July.
    3. Nian Liu & Cameron H. Lee & Tomek Swigut & Edward Grow & Bo Gu & Michael C. Bassik & Joanna Wysocka, 2018. "Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators," Nature, Nature, vol. 553(7687), pages 228-232, January.
    4. Lesca M. Holdt & Anika Stahringer & Kristina Sass & Garwin Pichler & Nils A. Kulak & Wolfgang Wilfert & Alexander Kohlmaier & Andreas Herbst & Bernd H. Northoff & Alexandros Nicolaou & Gabor Gäbel & F, 2016. "Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans," Nature Communications, Nature, vol. 7(1), pages 1-14, November.
    5. Yoav Lubelsky & Igor Ulitsky, 2018. "Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells," Nature, Nature, vol. 555(7694), pages 107-111, March.
    6. Debashish Ray & Hilal Kazan & Kate B. Cook & Matthew T. Weirauch & Hamed S. Najafabadi & Xiao Li & Serge Gueroussov & Mihai Albu & Hong Zheng & Ally Yang & Hong Na & Manuel Irimia & Leah H. Matzat & R, 2013. "A compendium of RNA-binding motifs for decoding gene regulation," Nature, Nature, vol. 499(7457), pages 172-177, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianjun Dong & Yunfei Bai & Zhixiang Liao & David Gritsch & Xiaoli Liu & Tao Wang & Rebeca Borges-Monroy & Alyssa Ehrlich & Geidy E. Serrano & Mel B. Feany & Thomas G. Beach & Clemens R. Scherzer, 2023. "Circular RNAs in the human brain are tailored to neuron identity and neuropsychiatric disease," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Ting Fu & Kofi Amoah & Tracey W. Chan & Jae Hoon Bahn & Jae-Hyung Lee & Sari Terrazas & Rockie Chong & Sriram Kosuri & Xinshu Xiao, 2024. "Massively parallel screen uncovers many rare 3′ UTR variants regulating mRNA abundance of cancer driver genes," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Haofan Sun & Bin Fu & Xiaohong Qian & Ping Xu & Weijie Qin, 2024. "Nuclear and cytoplasmic specific RNA binding proteome enrichment and its changes upon ferroptosis induction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Xuan Ye & Wen Yang & Soon Yi & Yanan Zhao & Gabriele Varani & Eckhard Jankowsky & Fan Yang, 2023. "Two distinct binding modes provide the RNA-binding protein RbFox with extraordinary sequence specificity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Johanna Luige & Alexandros Armaos & Gian Gaetano Tartaglia & Ulf Andersson Vang Ørom, 2024. "Predicting nuclear G-quadruplex RNA-binding proteins with roles in transcription and phase separation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Bin Li & Wen-Wu Bai & Tao Guo & Zhen-Yu Tang & Xue-Jiao Jing & Ti-Chao Shan & Sen Yin & Ying Li & Fu Wang & Mo-Li Zhu & Jun-Xiu Lu & Yong-Ping Bai & Bo Dong & Peng Li & Shuang-Xi Wang, 2024. "Statins improve cardiac endothelial function to prevent heart failure with preserved ejection fraction through upregulating circRNA-RBCK1," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Zili Song & Shuang Zhou & Hongjiao Zhang & Nancy P. Keller & Berl R. Oakley & Xiao Liu & Wen-Bing Yin, 2023. "Fungal secondary metabolism is governed by an RNA-binding protein CsdA/RsdA complex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Wei Hu & Yangjun Wu & Qili Shi & Jingni Wu & Deping Kong & Xiaohua Wu & Xianghuo He & Teng Liu & Shengli Li, 2022. "Systematic characterization of cancer transcriptome at transcript resolution," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Yue Liu & Yue Yang & Chenying Xu & Jianxing Liu & Jiale Chen & Guoqing Li & Bin Huang & Yi Pan & Yanfeng Zhang & Qiong Wei & Stephen J. Pandol & Fangfang Zhang & Ling Li & Liang Jin, 2023. "Circular RNA circGlis3 protects against islet β-cell dysfunction and apoptosis in obesity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. David Wang & Mathieu Quesnel-Vallieres & San Jewell & Moein Elzubeir & Kristen Lynch & Andrei Thomas-Tikhonenko & Yoseph Barash, 2023. "A Bayesian model for unsupervised detection of RNA splicing based subtypes in cancers," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Haoran Zhu & Yuning Yang & Yunhe Wang & Fuzhou Wang & Yujian Huang & Yi Chang & Ka-chun Wong & Xiangtao Li, 2023. "Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular conditions using HDRNet," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    12. Aidan M. Fenix & Yuichiro Miyaoka & Alessandro Bertero & Steven M. Blue & Matthew J. Spindler & Kenneth K. B. Tan & Juan A. Perez-Bermejo & Amanda H. Chan & Steven J. Mayerl & Trieu D. Nguyen & Caitli, 2021. "Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    13. Seungjae Lee & Yen-Chung Chen & Austin E. Gillen & J. Matthew Taliaferro & Bart Deplancke & Hongjie Li & Eric C. Lai, 2022. "Diverse cell-specific patterns of alternative polyadenylation in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Huijuan Feng & Xiang-Jun Lu & Suvrajit Maji & Linxi Liu & Dmytro Ustianenko & Noam D. Rudnick & Chaolin Zhang, 2024. "Structure-based prediction and characterization of photo-crosslinking in native protein–RNA complexes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Jian Han & Omer An & Xi Ren & Yangyang Song & Sze Jing Tang & Haoqing Shen & Xinyu Ke & Vanessa Hui En Ng & Daryl Jin Tai Tay & Hui Qing Tan & Dennis Kappei & Henry Yang & Leilei Chen, 2022. "Multilayered control of splicing regulatory networks by DAP3 leads to widespread alternative splicing changes in cancer," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Roberta Piras & Emily Y. Ko & Connor Barrett & Marco Simone & Xianzhi Lin & Marina T. Broz & Fernando H. G. Tessaro & Mireia Castillo-Martin & Carlos Cordon-Cardo & Helen S. Goodridge & Dolores Vizio , 2022. "circCsnk1g3- and circAnkib1-regulated interferon responses in sarcoma promote tumorigenesis by shaping the immune microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Xinzhi Li & Kaixin Ding & Xueying Li & Bingchuan Yuan & Yuqin Wang & Zhicheng Yao & Shuaikang Wang & He Huang & Bolin Xu & Liwei Xie & Tuo Deng & Xiao-wei Chen & Zheng Chen, 2022. "Deficiency of WTAP in hepatocytes induces lipoatrophy and non-alcoholic steatohepatitis (NASH)," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Elsa Zacco & Owen Kantelberg & Edoardo Milanetti & Alexandros Armaos & Francesco Paolo Panei & Jenna Gregory & Kiani Jeacock & David J. Clarke & Siddharthan Chandran & Giancarlo Ruocco & Stefano Gusti, 2022. "Probing TDP-43 condensation using an in silico designed aptamer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Deivid C. Rodrigues & Marat Mufteev & Kyoko E. Yuki & Ashrut Narula & Wei Wei & Alina Piekna & Jiajie Liu & Peter Pasceri & Olivia S. Rissland & Michael D. Wilson & James Ellis, 2023. "Buffering of transcription rate by mRNA half-life is a conserved feature of Rett syndrome models," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Zhenzhen Chen & Qiankun He & Tiankun Lu & Jiayi Wu & Gaoli Shi & Luyun He & Hong Zong & Benyu Liu & Pingping Zhu, 2023. "mcPGK1-dependent mitochondrial import of PGK1 promotes metabolic reprogramming and self-renewal of liver TICs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30183-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.