IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23705-9.html
   My bibliography  Save this article

Spatial intimacy of binary active-sites for selective sequential hydrogenation-condensation of nitriles into secondary imines

Author

Listed:
  • Sai Zhang

    (Northwestern Polytechnical University)

  • Zhaoming Xia

    (Xi’an Jiaotong University)

  • Yong Zou

    (Xi’an Jiaotong University)

  • Mingkai Zhang

    (Xi’an Jiaotong University)

  • Yongquan Qu

    (Northwestern Polytechnical University
    Xi’an Jiaotong University)

Abstract

Precisely controlling the spatial intimacy of multiple active sites at sub-nanoscale in heterogeneous catalysts can improve their selectivity and activity. Herein, we realize a highly selective nitrile-to-secondary imine transformation through a cascaded hydrogenation and condensation process by Pt1/CoBOx comprising the binary active sites of the single-dispersed Pt and interfacial Lewis acidic B. Atomic Pt sites with large inter-distances (>nanometers) only activate hydrogen for nitrile hydrogenation, but inhibit condensation. Both adjacent B…B on CoBOx and neighbouring Pt…B pairs with close intimacy of ~0.45 nm can satisfy the spatial prerequisites for condensation. Mechanism investigations demonstrate the energetically favorable pathway occurred on adjacent Lewis acidic B sites through the nitrile adsorption (acid-base interaction), hydrogenation via hydrogen spillover from Pt to B sites and sequential condensation. Strong intermolecular tension and steric hindrance of secondary imines on active sites lead to their effective desorption and thereby a high chemoselectivity of secondary imines.

Suggested Citation

  • Sai Zhang & Zhaoming Xia & Yong Zou & Mingkai Zhang & Yongquan Qu, 2021. "Spatial intimacy of binary active-sites for selective sequential hydrogenation-condensation of nitriles into secondary imines," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23705-9
    DOI: 10.1038/s41467-021-23705-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23705-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23705-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chongyang Tang & Cong Wei & Yanyan Fang & Bo Liu & Xianyin Song & Zenan Bian & Xuanwei Yin & Hongbo Wang & Zhaohui Liu & Gongming Wang & Xiangheng Xiao & Xiangfeng Duan, 2024. "Electrocatalytic hydrogenation of acetonitrile to ethylamine in acid," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Jinqi Xiong & Shanjun Mao & Qian Luo & Honghui Ning & Bing Lu & Yanling Liu & Yong Wang, 2024. "Mediating trade-off between activity and selectivity in alkynes semi-hydrogenation via a hydrophilic polar layer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Cong Wei & Yanyan Fang & Bo Liu & Chongyang Tang & Bin Dong & Xuanwei Yin & Zenan Bian & Zhandong Wang & Jun Liu & Yitai Qian & Gongming Wang, 2023. "Lattice oxygen-mediated electron tuning promotes electrochemical hydrogenation of acetonitrile on copper catalysts," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23705-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.