IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39450-0.html
   My bibliography  Save this article

Achieving near-perfect light absorption in atomically thin transition metal dichalcogenides through band nesting

Author

Listed:
  • Seungjun Lee

    (University of Minnesota)

  • Dongjea Seo

    (University of Minnesota)

  • Sang Hyun Park

    (University of Minnesota)

  • Nezhueytl Izquierdo

    (University of Minnesota)

  • Eng Hock Lee

    (University of Minnesota)

  • Rehan Younas

    (University of Notre Dame)

  • Guanyu Zhou

    (University of Notre Dame)

  • Milan Palei

    (University of Notre Dame)

  • Anthony J. Hoffman

    (University of Notre Dame)

  • Min Seok Jang

    (Korea Advanced Institute of Science and Technology)

  • Christopher L. Hinkle

    (University of Notre Dame)

  • Steven J. Koester

    (University of Minnesota)

  • Tony Low

    (University of Minnesota
    University of Minnesota)

Abstract

Near-perfect light absorbers (NPLAs), with absorbance, $${{{{{{{\mathcal{A}}}}}}}}$$ A , of at least 99%, have a wide range of applications ranging from energy and sensing devices to stealth technologies and secure communications. Previous work on NPLAs has mainly relied upon plasmonic structures or patterned metasurfaces, which require complex nanolithography, limiting their practical applications, particularly for large-area platforms. Here, we use the exceptional band nesting effect in TMDs, combined with a Salisbury screen geometry, to demonstrate NPLAs using only two or three uniform atomic layers of transition metal dichalcogenides (TMDs). The key innovation in our design, verified using theoretical calculations, is to stack monolayer TMDs in such a way as to minimize their interlayer coupling, thus preserving their strong band nesting properties. We experimentally demonstrate two feasible routes to controlling the interlayer coupling: twisted TMD bi-layers and TMD/buffer layer/TMD tri-layer heterostructures. Using these approaches, we demonstrate room-temperature values of $${{{{{{{\mathcal{A}}}}}}}}$$ A =95% at λ=2.8 eV with theoretically predicted values as high as 99%. Moreover, the chemical variety of TMDs allows us to design NPLAs covering the entire visible range, paving the way for efficient atomically-thin optoelectronics.

Suggested Citation

  • Seungjun Lee & Dongjea Seo & Sang Hyun Park & Nezhueytl Izquierdo & Eng Hock Lee & Rehan Younas & Guanyu Zhou & Milan Palei & Anthony J. Hoffman & Min Seok Jang & Christopher L. Hinkle & Steven J. Koe, 2023. "Achieving near-perfect light absorption in atomically thin transition metal dichalcogenides through band nesting," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39450-0
    DOI: 10.1038/s41467-023-39450-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39450-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39450-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. In-Ho Lee & Mingze He & Xi Zhang & Yujie Luo & Song Liu & James H. Edgar & Ke Wang & Phaedon Avouris & Tony Low & Joshua D. Caldwell & Sang-Hyun Oh, 2020. "Image polaritons in boron nitride for extreme polariton confinement with low losses," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Yuan Huang & Yu-Hao Pan & Rong Yang & Li-Hong Bao & Lei Meng & Hai-Lan Luo & Yong-Qing Cai & Guo-Dong Liu & Wen-Juan Zhao & Zhang Zhou & Liang-Mei Wu & Zhi-Li Zhu & Ming Huang & Li-Wei Liu & Lei Liu &, 2020. "Universal mechanical exfoliation of large-area 2D crystals," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Lei Chen & Tsampikos Kottos & Steven M. Anlage, 2020. "Perfect absorption in complex scattering systems with or without hidden symmetries," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Heng Wang & Yuying Zhu & Zhonghua Bai & Zechao Wang & Shuxu Hu & Hong-Yi Xie & Xiaopeng Hu & Jian Cui & Miaoling Huang & Jianhao Chen & Ying Ding & Lin Zhao & Xinyan Li & Qinghua Zhang & Lin Gu & X. J, 2023. "Prominent Josephson tunneling between twisted single copper oxide planes of Bi2Sr2-xLaxCuO6+y," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Zhuyuan Wang & Xue Yan & Qinfu Hou & Yue Liu & Xiangkang Zeng & Yuan Kang & Wang Zhao & Xuefeng Li & Shi Yuan & Ruosang Qiu & Md Hemayet Uddin & Ruoxin Wang & Yun Xia & Meipeng Jian & Yan Kang & Li Ga, 2023. "Scalable high yield exfoliation for monolayer nanosheets," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Christoph W. Zollitsch & Safe Khan & Vu Thanh Trung Nam & Ivan A. Verzhbitskiy & Dimitrios Sagkovits & James O’Sullivan & Oscar W. Kennedy & Mara Strungaru & Elton J. G. Santos & John J. L. Morton & G, 2023. "Probing spin dynamics of ultra-thin van der Waals magnets via photon-magnon coupling," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Junpeng Zeng & Daowei He & Jingsi Qiao & Yating Li & Li Sun & Weisheng Li & Jiacheng Xie & Si Gao & Lijia Pan & Peng Wang & Yong Xu & Yun Li & Hao Qiu & Yi Shi & Jian-Bin Xu & Wei Ji & Xinran Wang, 2023. "Ultralow contact resistance in organic transistors via orbital hybridization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Ruijin Sun & Jun Deng & Xiaowei Wu & Munan Hao & Ke Ma & Yuxin Ma & Changchun Zhao & Dezhong Meng & Xiaoyu Ji & Yiyang Ding & Yu Pang & Xin Qian & Ronggui Yang & Guodong Li & Zhilin Li & Linjie Dai & , 2023. "High anisotropy in electrical and thermal conductivity through the design of aerogel-like superlattice (NaOH)0.5NbSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39450-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.