IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39357-w.html
   My bibliography  Save this article

Structural basis for DARC binding in reticulocyte invasion by Plasmodium vivax

Author

Listed:
  • Re’em Moskovitz

    (University of Oxford)

  • Tossapol Pholcharee

    (University of Oxford)

  • Sophia M. DonVito

    (London School of Hygiene and Tropical Medicine)

  • Bora Guloglu

    (University of Oxford)

  • Edward Lowe

    (University of Oxford)

  • Franziska Mohring

    (London School of Hygiene and Tropical Medicine)

  • Robert W. Moon

    (London School of Hygiene and Tropical Medicine)

  • Matthew K. Higgins

    (University of Oxford)

Abstract

The symptoms of malaria occur during the blood stage of infection, when the parasite replicates within human red blood cells. The human malaria parasite, Plasmodium vivax, selectively invades reticulocytes in a process which requires an interaction between the ectodomain of the human DARC receptor and the Plasmodium vivax Duffy-binding protein, PvDBP. Previous studies have revealed that a small helical peptide from DARC binds to region II of PvDBP (PvDBP-RII). However, it is also known that sulphation of tyrosine residues on DARC affects its binding to PvDBP and these residues were not observed in previous structures. We therefore present the structure of PvDBP-RII bound to sulphated DARC peptide, showing that a sulphate on tyrosine 41 binds to a charged pocket on PvDBP-RII. We use molecular dynamics simulations, affinity measurements and growth-inhibition experiments in parasites to confirm the importance of this interaction. We also reveal the epitope for vaccine-elicited growth-inhibitory antibody DB1. This provides a complete understanding of the binding of PvDBP-RII to DARC and will guide the design of vaccines and therapeutics to target this essential interaction.

Suggested Citation

  • Re’em Moskovitz & Tossapol Pholcharee & Sophia M. DonVito & Bora Guloglu & Edward Lowe & Franziska Mohring & Robert W. Moon & Matthew K. Higgins, 2023. "Structural basis for DARC binding in reticulocyte invasion by Plasmodium vivax," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39357-w
    DOI: 10.1038/s41467-023-39357-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39357-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39357-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Eastman & Jason Swails & John D Chodera & Robert T McGibbon & Yutong Zhao & Kyle A Beauchamp & Lee-Ping Wang & Andrew C Simmonett & Matthew P Harrigan & Chaya D Stern & Rafal P Wiewiora & Bernar, 2017. "OpenMM 7: Rapid development of high performance algorithms for molecular dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-17, July.
    2. Robert P. Rambo & John A. Tainer, 2013. "Accurate assessment of mass, models and resolution by small-angle scattering," Nature, Nature, vol. 496(7446), pages 477-481, April.
    3. Saurabh Kumar Singh & Rachna Hora & Hassan Belrhali & Chetan E. Chitnis & Amit Sharma, 2006. "Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain," Nature, Nature, vol. 439(7077), pages 741-744, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janni Harju & Muriel C. F. Teeseling & Chase P. Broedersz, 2024. "Loop-extruders alter bacterial chromosome topology to direct entropic forces for segregation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Christian Hentrich & Mateusz Putyrski & Hanh Hanuschka & Waldemar Preis & Sarah-Jane Kellmann & Melissa Wich & Manuel Cavada & Sarah Hanselka & Victor S. Lelyveld & Francisco Ylera, 2024. "Engineered reversible inhibition of SpyCatcher reactivity enables rapid generation of bispecific antibodies," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Tom Dixon & Derek MacPherson & Barmak Mostofian & Taras Dauzhenka & Samuel Lotz & Dwight McGee & Sharon Shechter & Utsab R. Shrestha & Rafal Wiewiora & Zachary A. McDargh & Fen Pei & Rajat Pal & João , 2022. "Predicting the structural basis of targeted protein degradation by integrating molecular dynamics simulations with structural mass spectrometry," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    4. Joseph G. Beton & Thomas Mulvaney & Tristan Cragnolini & Maya Topf, 2024. "Cryo-EM structure and B-factor refinement with ensemble representation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Andreas Mardt & Tim Hempel & Cecilia Clementi & Frank Noé, 2022. "Deep learning to decompose macromolecules into independent Markovian domains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Johnny Lisboa & Cassilda Pereira & Rute D. Pinto & Inês S. Rodrigues & Liliana M. G. Pereira & Bruno Pinheiro & Pedro Oliveira & Pedro José Barbosa Pereira & Jorge E. Azevedo & Dominique Durand & Rola, 2023. "Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. David P. McDonogh & Julian D. Gale & Paolo Raiteri & Denis Gebauer, 2024. "Redefined ion association constants have consequences for calcium phosphate nucleation and biomineralization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. F. P. Panei & P. Gkeka & M. Bonomi, 2024. "Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Amika Kikuchi & Hiroki Onoda & Kosuke Yamaguchi & Satomi Kori & Shun Matsuzawa & Yoshie Chiba & Shota Tanimoto & Sae Yoshimi & Hiroki Sato & Atsushi Yamagata & Mikako Shirouzu & Naruhiko Adachi & Jafa, 2022. "Structural basis for activation of DNMT1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Ifeanyichukwu Okeke & Tanko Ishaya & EO Afolabi, 2020. "Molecular Dynamics Simulation and Analysis of some Ligands on Var2csA Target," Novel Approaches in Drug Designing & Development, Juniper Publishers Inc., vol. 5(4), pages 63-84, October.
    12. Zsolt Fazekas & Dóra K. Menyhárd & András Perczel, 2024. "LoCoHD: a metric for comparing local environments of proteins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Jaewoon Jung & Cheng Tan & Yuji Sugita, 2024. "GENESIS CGDYN: large-scale coarse-grained MD simulation with dynamic load balancing for heterogeneous biomolecular systems," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Xiang Chen & Yan Wang & Zhonghe Xu & Meng-Li Cheng & Qing-Qing Ma & Rui-Ting Li & Zheng-Jian Wang & Hui Zhao & Xiaobing Zuo & Xiao-Feng Li & Xianyang Fang & Cheng-Feng Qin, 2023. "Zika virus RNA structure controls its unique neurotropism by bipartite binding to Musashi-1," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Abhishek Jamwal & Florent Colomb & Henry J. McSorley & Matthew K. Higgins, 2024. "Structural basis for IL-33 recognition and its antagonism by the helminth effector protein HpARI2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Amy Rice & Sourav Haldar & Eric Wang & Paul S. Blank & Sergey A. Akimov & Timur R. Galimzyanov & Richard W. Pastor & Joshua Zimmerberg, 2022. "Planar aggregation of the influenza viral fusion peptide alters membrane structure and hydration, promoting poration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Dawei Sun & Yonglian Sun & Eric Janezic & Tricia Zhou & Matthew Johnson & Caleigh Azumaya & Sigrid Noreng & Cecilia Chiu & Akiko Seki & Teresita L. Arenzana & John M. Nicoludis & Yongchang Shi & Baome, 2023. "Structural basis of antibody inhibition and chemokine activation of the human CC chemokine receptor 8," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Jan Felix & Ladislav Bumba & Clarissa Liesche & Angélique Fraudeau & Fabrice Rébeillé & Jessica Y. El Khoury & Karine Huard & Benoit Gallet & Christine Moriscot & Jean-Philippe Kleman & Yoan Duhoo & M, 2022. "The AAA+ ATPase RavA and its binding partner ViaA modulate E. coli aminoglycoside sensitivity through interaction with the inner membrane," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Shana Bergman & Rosemary J. Cater & Ambrose Plante & Filippo Mancia & George Khelashvili, 2023. "Substrate binding-induced conformational transitions in the omega-3 fatty acid transporter MFSD2A," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Jongdae Won & Jinsung Kim & Hyeongseop Jeong & Jinhyeong Kim & Shasha Feng & Byeongseok Jeong & Misun Kwak & Juyeon Ko & Wonpil Im & Insuk So & Hyung Ho Lee, 2023. "Molecular architecture of the Gαi-bound TRPC5 ion channel," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39357-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.