IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18671-7.html
   My bibliography  Save this article

Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates

Author

Listed:
  • Giorgio Pesciullesi

    (University of Bern)

  • Philippe Schwaller

    (University of Bern
    IBM Research—Europe)

  • Teodoro Laino

    (IBM Research—Europe)

  • Jean-Louis Reymond

    (University of Bern)

Abstract

Organic synthesis methodology enables the synthesis of complex molecules and materials used in all fields of science and technology and represents a vast body of accumulated knowledge optimally suited for deep learning. While most organic reactions involve distinct functional groups and can readily be learned by deep learning models and chemists alike, regio- and stereoselective transformations are more challenging because their outcome also depends on functional group surroundings. Here, we challenge the Molecular Transformer model to predict reactions on carbohydrates where regio- and stereoselectivity are notoriously difficult to predict. We show that transfer learning of the general patent reaction model with a small set of carbohydrate reactions produces a specialized model returning predictions for carbohydrate reactions with remarkable accuracy. We validate these predictions experimentally with the synthesis of a lipid-linked oligosaccharide involving regioselective protections and stereoselective glycosylations. The transfer learning approach should be applicable to any reaction class of interest.

Suggested Citation

  • Giorgio Pesciullesi & Philippe Schwaller & Teodoro Laino & Jean-Louis Reymond, 2020. "Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18671-7
    DOI: 10.1038/s41467-020-18671-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18671-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18671-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuangjia Zheng & Tao Zeng & Chengtao Li & Binghong Chen & Connor W. Coley & Yuedong Yang & Ruibo Wu, 2022. "Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Min Li & Yang Zhou & Zexing Wen & Qian Ni & Ziqin Zhou & Yiling Liu & Qiang Zhou & Zongchao Jia & Bin Guo & Yuanhong Ma & Bo Chen & Zhi-Min Zhang & Jian-bo Wang, 2024. "An efficient C-glycoside production platform enabled by rationally tuning the chemoselectivity of glycosyltransferases," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Umit V. Ucak & Islambek Ashyrmamatov & Junsu Ko & Juyong Lee, 2022. "Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Shu-Wen Li & Li-Cheng Xu & Cheng Zhang & Shuo-Qing Zhang & Xin Hong, 2023. "Reaction performance prediction with an extrapolative and interpretable graph model based on chemical knowledge," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Daniel Probst & Matteo Manica & Yves Gaetan Nana Teukam & Alessandro Castrogiovanni & Federico Paratore & Teodoro Laino, 2022. "Biocatalysed synthesis planning using data-driven learning," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18671-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.