IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39256-0.html
   My bibliography  Save this article

Maternal NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice

Author

Listed:
  • Xue Jiang

    (University of Science and Technology of China (USTC))

  • Yu Cheng

    (University of Science and Technology of China (USTC))

  • Yuzhang Zhu

    (University of Science and Technology of China (USTC))

  • Caoling Xu

    (University of Science and Technology of China (USTC))

  • Qiaodan Li

    (University of Science and Technology of China (USTC))

  • Xuemei Xing

    (University of Science and Technology of China (USTC))

  • Wenqing Li

    (University of Science and Technology of China (USTC))

  • Jiaqi Zou

    (University of Science and Technology of China (USTC))

  • Lan Meng

    (University of Science and Technology of China (USTC))

  • Muhammad Azhar

    (University of Science and Technology of China (USTC))

  • Yuzhu Cao

    (University of Science and Technology of China (USTC))

  • Xianhong Tong

    (University of Science and Technology of China (USTC))

  • Weibing Qin

    (Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital))

  • Xiaoli Zhu

    (University of Science and Technology of China (USTC))

  • Jianqiang Bao

    (University of Science and Technology of China (USTC)
    University of Science and Technology of China (USTC))

Abstract

In mammals, the production of mature oocytes necessitates rigorous regulation of the discontinuous meiotic cell-cycle progression at both the transcriptional and post-transcriptional levels. However, the factors underlying this sophisticated but explicit process remain largely unclear. Here we characterize the function of N-acetyltransferase 10 (Nat10), a writer for N4-acetylcytidine (ac4C) on RNA molecules, in mouse oocyte development. We provide genetic evidence that Nat10 is essential for oocyte meiotic prophase I progression, oocyte growth and maturation by sculpting the maternal transcriptome through timely degradation of poly(A) tail mRNAs. This is achieved through the ac4C deposition on the key CCR4-NOT complex transcripts. Importantly, we devise a method for examining the poly(A) tail length (PAT), termed Hairpin Adaptor-poly(A) tail length (HA-PAT), which outperforms conventional methods in terms of cost, sensitivity, and efficiency. In summary, these findings provide genetic evidence that unveils the indispensable role of maternal Nat10 in oocyte development.

Suggested Citation

  • Xue Jiang & Yu Cheng & Yuzhang Zhu & Caoling Xu & Qiaodan Li & Xuemei Xing & Wenqing Li & Jiaqi Zou & Lan Meng & Muhammad Azhar & Yuzhu Cao & Xianhong Tong & Weibing Qin & Xiaoli Zhu & Jianqiang Bao, 2023. "Maternal NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39256-0
    DOI: 10.1038/s41467-023-39256-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39256-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39256-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aldema Sas-Chen & Justin M. Thomas & Donna Matzov & Masato Taoka & Kellie D. Nance & Ronit Nir & Keri M. Bryson & Ran Shachar & Geraldy L. S. Liman & Brett W. Burkhart & Supuni Thalalla Gamage & Yuko , 2020. "Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping," Nature, Nature, vol. 583(7817), pages 638-643, July.
    2. Marcos Morgan & Christian Much & Monica DiGiacomo & Chiara Azzi & Ivayla Ivanova & Dimitrios M. Vitsios & Jelena Pistolic & Paul Collier & Pedro N. Moreira & Vladimir Benes & Anton J. Enright & Dónal , 2017. "mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome," Nature, Nature, vol. 548(7667), pages 347-351, August.
    3. Bingjie Zhang & Hui Zheng & Bo Huang & Wenzhi Li & Yunlong Xiang & Xu Peng & Jia Ming & Xiaotong Wu & Yu Zhang & Qianhua Xu & Wenqiang Liu & Xiaochen Kou & Yanhong Zhao & Wenteng He & Chong Li & Bo Ch, 2016. "Allelic reprogramming of the histone modification H3K4me3 in early mammalian development," Nature, Nature, vol. 537(7621), pages 553-557, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Shanmugha Rajan & Hava Madmoni & Anat Bashan & Masato Taoka & Saurav Aryal & Yuko Nobe & Tirza Doniger & Beathrice Galili Kostin & Amit Blumberg & Smadar Cohen-Chalamish & Schraga Schwartz & Andre , 2023. "A single pseudouridine on rRNA regulates ribosome structure and function in the mammalian parasite Trypanosoma brucei," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Qin Yan & Jing Zhou & Ziyu Wang & Xiangya Ding & Xinyue Ma & Wan Li & Xuemei Jia & Shou-Jiang Gao & Chun Lu, 2023. "NAT10-dependent N4‐acetylcytidine modification mediates PAN RNA stability, KSHV reactivation, and IFI16-related inflammasome activation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Belinda Baquero-Pérez & Ivaylo D. Yonchev & Anna Delgado-Tejedor & Rebeca Medina & Mireia Puig-Torrents & Ian Sudbery & Oguzhan Begik & Stuart A. Wilson & Eva Maria Novoa & Juana Díez, 2024. "N6-methyladenosine modification is not a general trait of viral RNA genomes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Nozomi Takahashi & Federica Franciosi & Enrico Maria Daldello & Xuan G. Luong & Peter Althoff & Xiaotian Wang & Marco Conti, 2023. "CPEB1-dependent disruption of the mRNA translation program in oocytes during maternal aging," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Kristin A. Fluke & Ryan T. Fuchs & Yueh-Lin Tsai & Victoria Talbott & Liam Elkins & Hallie P. Febvre & Nan Dai & Eric J. Wolf & Brett W. Burkhart & Jackson Schiltz & G. Brett Robb & Ivan R. Corrêa & T, 2024. "The extensive m5C epitranscriptome of Thermococcus kodakarensis is generated by a suite of RNA methyltransferases that support thermophily," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    6. Jianheng Liu & Tao Huang & Wanying Chen & Chenhui Ding & Tianxuan Zhao & Xueni Zhao & Bing Cai & Yusen Zhang & Song Li & Ling Zhang & Maoguang Xue & Xiuju He & Wanzhong Ge & Canquan Zhou & Yanwen Xu &, 2022. "Developmental mRNA m5C landscape and regulatory innovations of massive m5C modification of maternal mRNAs in animals," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Seisuke Yamashita & Kozo Tomita, 2023. "Mechanism of U6 snRNA oligouridylation by human TUT1," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Denis Torre & Nancy J. Francoeur & Yael Kalma & Ilana Gross Carmel & Betsaida S. Melo & Gintaras Deikus & Kimaada Allette & Ron Flohr & Maya Fridrikh & Konstantinos Vlachos & Kent Madrid & Hardik Shah, 2023. "Isoform-resolved transcriptome of the human preimplantation embryo," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39256-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.