IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42135-3.html
   My bibliography  Save this article

NAT10-dependent N4‐acetylcytidine modification mediates PAN RNA stability, KSHV reactivation, and IFI16-related inflammasome activation

Author

Listed:
  • Qin Yan

    (Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University
    Nanjing Medical University
    Nanjing Medical University
    Nanjing Medical University)

  • Jing Zhou

    (Nanjing Medical University)

  • Ziyu Wang

    (Nanjing Medical University)

  • Xiangya Ding

    (Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University)

  • Xinyue Ma

    (Nanjing Medical University)

  • Wan Li

    (Nanjing Medical University
    Nanjing Medical University
    Nanjing Medical University)

  • Xuemei Jia

    (Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University)

  • Shou-Jiang Gao

    (University of Pittsburgh)

  • Chun Lu

    (Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University
    Nanjing Medical University
    Nanjing Medical University
    Nanjing Medical University)

Abstract

N-acetyltransferase 10 (NAT10) is an N4‐acetylcytidine (ac4C) writer that catalyzes RNA acetylation at cytidine N4 position on tRNAs, rRNAs and mRNAs. Recently, NAT10 and the associated ac4C have been reported to increase the stability of HIV-1 transcripts. Here, we show that NAT10 catalyzes ac4C addition to the polyadenylated nuclear RNA (PAN), a long non-coding RNA encoded by the oncogenic DNA virus Kaposi’s sarcoma-associated herpesvirus (KSHV), triggering viral lytic reactivation from latency. Mutagenesis of ac4C sites in PAN RNA in the context of KSHV infection abolishes PAN ac4C modifications, downregulates the expression of viral lytic genes and reduces virion production. NAT10 knockdown or mutagenesis erases ac4C modifications of PAN RNA and increases its instability, and prevents KSHV reactivation. Furthermore, PAN ac4C modification promotes NAT10 recruitment of IFN-γ-inducible protein-16 (IFI16) mRNA, resulting in its ac4C acetylation, mRNA stability and translation, and eventual inflammasome activation. These results reveal a novel mechanism of viral and host ac4C modifications and the associated complexes as a critical switch of KSHV replication and antiviral immunity.

Suggested Citation

  • Qin Yan & Jing Zhou & Ziyu Wang & Xiangya Ding & Xinyue Ma & Wan Li & Xuemei Jia & Shou-Jiang Gao & Chun Lu, 2023. "NAT10-dependent N4‐acetylcytidine modification mediates PAN RNA stability, KSHV reactivation, and IFI16-related inflammasome activation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42135-3
    DOI: 10.1038/s41467-023-42135-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42135-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42135-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jessica F. Almine & Craig A. J. O’Hare & Gillian Dunphy & Ismar R. Haga & Rangeetha J. Naik & Abdelmadjid Atrih & Dympna J. Connolly & Jordan Taylor & Ian R. Kelsall & Andrew G. Bowie & Philippa M. Be, 2017. "IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes," Nature Communications, Nature, vol. 8(1), pages 1-15, April.
    2. Aldema Sas-Chen & Justin M. Thomas & Donna Matzov & Masato Taoka & Kellie D. Nance & Ronit Nir & Keri M. Bryson & Ran Shachar & Geraldy L. S. Liman & Brett W. Burkhart & Supuni Thalalla Gamage & Yuko , 2020. "Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping," Nature, Nature, vol. 583(7817), pages 638-643, July.
    3. Mai Tram Vo & Barbara J. Smith & John Nicholas & Young Bong Choi, 2019. "Activation of NIX-mediated mitophagy by an interferon regulatory factor homologue of human herpesvirus," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiqi Huang & Valter Bergant & Vincent Grass & Quirin Emslander & M. Sabri Hamad & Philipp Hubel & Julia Mergner & Antonio Piras & Karsten Krey & Alexander Henrici & Rupert Öllinger & Yonas M. Tesfamar, 2024. "Multi-omics characterization of the monkeypox virus infection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Martha Triantafilou & Joshi Ramanjulu & Lee M. Booty & Gisela Jimenez-Duran & Hakan Keles & Ken Saunders & Neysa Nevins & Emma Koppe & Louise K. Modis & G. Scott Pesiridis & John Bertin & Kathy Triant, 2022. "Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. K. Shanmugha Rajan & Hava Madmoni & Anat Bashan & Masato Taoka & Saurav Aryal & Yuko Nobe & Tirza Doniger & Beathrice Galili Kostin & Amit Blumberg & Smadar Cohen-Chalamish & Schraga Schwartz & Andre , 2023. "A single pseudouridine on rRNA regulates ribosome structure and function in the mammalian parasite Trypanosoma brucei," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Dongqi Nan & Chenglong Rao & Zhiheng Tang & Wenbo Yang & Pan Wu & Jiangao Chen & Yupei Xia & Jingmin Yan & Wenzheng Liu & Ziyuan Zhang & Zhiqiang Hu & Hai Chen & Yaling Liao & Xuhu Mao & Xiaoyun Liu &, 2024. "Burkholderia pseudomallei BipD modulates host mitophagy to evade killing," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Belinda Baquero-Pérez & Ivaylo D. Yonchev & Anna Delgado-Tejedor & Rebeca Medina & Mireia Puig-Torrents & Ian Sudbery & Oguzhan Begik & Stuart A. Wilson & Eva Maria Novoa & Juana Díez, 2024. "N6-methyladenosine modification is not a general trait of viral RNA genomes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Nozomi Takahashi & Federica Franciosi & Enrico Maria Daldello & Xuan G. Luong & Peter Althoff & Xiaotian Wang & Marco Conti, 2023. "CPEB1-dependent disruption of the mRNA translation program in oocytes during maternal aging," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Kristin A. Fluke & Ryan T. Fuchs & Yueh-Lin Tsai & Victoria Talbott & Liam Elkins & Hallie P. Febvre & Nan Dai & Eric J. Wolf & Brett W. Burkhart & Jackson Schiltz & G. Brett Robb & Ivan R. Corrêa & T, 2024. "The extensive m5C epitranscriptome of Thermococcus kodakarensis is generated by a suite of RNA methyltransferases that support thermophily," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Jianheng Liu & Tao Huang & Wanying Chen & Chenhui Ding & Tianxuan Zhao & Xueni Zhao & Bing Cai & Yusen Zhang & Song Li & Ling Zhang & Maoguang Xue & Xiuju He & Wanzhong Ge & Canquan Zhou & Yanwen Xu &, 2022. "Developmental mRNA m5C landscape and regulatory innovations of massive m5C modification of maternal mRNAs in animals," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Xue Jiang & Yu Cheng & Yuzhang Zhu & Caoling Xu & Qiaodan Li & Xuemei Xing & Wenqing Li & Jiaqi Zou & Lan Meng & Muhammad Azhar & Yuzhu Cao & Xianhong Tong & Weibing Qin & Xiaoli Zhu & Jianqiang Bao, 2023. "Maternal NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42135-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.