IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39030-2.html
   My bibliography  Save this article

The monoaminergic system is a bilaterian innovation

Author

Listed:
  • Matthew Goulty

    (University of Leicester)

  • Gaelle Botton-Amiot

    (University of Fribourg)

  • Ezio Rosato

    (University of Leicester)

  • Simon G. Sprecher

    (University of Fribourg)

  • Roberto Feuda

    (University of Leicester)

Abstract

Monoamines like serotonin, dopamine, and adrenaline/noradrenaline (epinephrine/norepinephrine) act as neuromodulators in the nervous system. They play a role in complex behaviours, cognitive functions such as learning and memory formation, as well as fundamental homeostatic processes such as sleep and feeding. However, the evolutionary origin of the genes required for monoaminergic modulation is uncertain. Using a phylogenomic approach, in this study, we show that most of the genes involved in monoamine production, modulation, and reception originated in the bilaterian stem group. This suggests that the monoaminergic system is a bilaterian novelty and that its evolution may have contributed to the Cambrian diversification.

Suggested Citation

  • Matthew Goulty & Gaelle Botton-Amiot & Ezio Rosato & Simon G. Sprecher & Roberto Feuda, 2023. "The monoaminergic system is a bilaterian innovation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39030-2
    DOI: 10.1038/s41467-023-39030-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39030-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39030-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Lemoine & J.-B. Domelevo Entfellner & E. Wilkinson & D. Correia & M. Dávila Felipe & T. Oliveira & O. Gascuel, 2018. "Renewing Felsenstein’s phylogenetic bootstrap in the era of big data," Nature, Nature, vol. 556(7702), pages 452-456, April.
    2. Casey W. Dunn & Andreas Hejnol & David Q. Matus & Kevin Pang & William E. Browne & Stephen A. Smith & Elaine Seaver & Greg W. Rouse & Matthias Obst & Gregory D. Edgecombe & Martin V. Sørensen & Steven, 2008. "Broad phylogenomic sampling improves resolution of the animal tree of life," Nature, Nature, vol. 452(7188), pages 745-749, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie-Claire Daugeron & Sophia Missoury & Violette Cunha & Noureddine Lazar & Bruno Collinet & Herman Tilbeurgh & Tamara Basta, 2023. "A paralog of Pcc1 is the fifth core subunit of the KEOPS tRNA-modifying complex in Archaea," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Alessandro Boverio & Neelam Jamil & Barbara Mannucci & Maria Laura Mascotti & Marco W. Fraaije & Andrea Mattevi, 2024. "Structure, mechanism, and evolution of the last step in vitamin C biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Maria E Gallegos & Sanjeev Balakrishnan & Priya Chandramouli & Shaily Arora & Aruna Azameera & Anitha Babushekar & Emilee Bargoma & Abdulmalik Bokhari & Siva Kumari Chava & Pranti Das & Meetali Desai , 2012. "The C. elegans Rab Family: Identification, Classification and Toolkit Construction," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-19, November.
    4. Emese Meglécz & Gabriel Nève & Ed Biffin & Michael G Gardner, 2012. "Breakdown of Phylogenetic Signal: A Survey of Microsatellite Densities in 454 Shotgun Sequences from 154 Non Model Eukaryote Species," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-15, July.
    5. Joao A. Ascensao & Kelly M. Wetmore & Benjamin H. Good & Adam P. Arkin & Oskar Hallatschek, 2023. "Quantifying the local adaptive landscape of a nascent bacterial community," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Fares Boudjouan & Walid Zeghbib & João Carneiro & Raquel Silva & João Morais & Vitor Vasconcelos & Graciliana Lopes, 2022. "Comparison Study on Wild and Cultivated Opuntia sp.: Chemical, Taxonomic, and Antioxidant Evaluations," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    7. Lauren E. Vandepas & Caroline Stefani & Phillip P. Domeier & Nikki Traylor-Knowles & Frederick W. Goetz & William E. Browne & Adam Lacy-Hulbert, 2024. "Extracellular DNA traps in a ctenophore demonstrate immune cell behaviors in a non-bilaterian," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Helen E. Robertson & Arnau Sebé-Pedrós & Baptiste Saudemont & Yann Loe-Mie & Anne-C. Zakrzewski & Xavier Grau-Bové & Marie-Pierre Mailhe & Philipp Schiffer & Maximilian J. Telford & Heather Marlow, 2024. "Single cell atlas of Xenoturbella bocki highlights limited cell-type complexity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. M Antonio Todaro & Tobias Kånneby & Matteo Dal Zotto & Ulf Jondelius, 2011. "Phylogeny of Thaumastodermatidae (Gastrotricha: Macrodasyida) Inferred from Nuclear and Mitochondrial Sequence Data," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-13, March.
    10. Julie D Thompson & Benjamin Linard & Odile Lecompte & Olivier Poch, 2011. "A Comprehensive Benchmark Study of Multiple Sequence Alignment Methods: Current Challenges and Future Perspectives," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-14, March.
    11. Gautier Bailleul & Guang Yang & Callum R. Nicoll & Andrea Mattevi & Marco W. Fraaije & Maria Laura Mascotti, 2023. "Evolution of enzyme functionality in the flavin-containing monooxygenases," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Tomoyuki Hatano & Saravanan Palani & Dimitra Papatziamou & Ralf Salzer & Diorge P. Souza & Daniel Tamarit & Mehul Makwana & Antonia Potter & Alexandra Haig & Wenjue Xu & David Townsend & David Rochest, 2022. "Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Bryan Korithoski & Oralia Kolaczkowski & Krishanu Mukherjee & Reema Kola & Chandra Earl & Bryan Kolaczkowski, 2015. "Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-26, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39030-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.