IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38996-3.html
   My bibliography  Save this article

Three-dimensional printing of silica glass with sub-micrometer resolution

Author

Listed:
  • Po-Han Huang

    (KTH Royal Institute of Technology)

  • Miku Laakso

    (KTH Royal Institute of Technology)

  • Pierre Edinger

    (KTH Royal Institute of Technology)

  • Oliver Hartwig

    (University of the Bundeswehr Munich & SENS Research Center)

  • Georg S. Duesberg

    (University of the Bundeswehr Munich & SENS Research Center)

  • Lee-Lun Lai

    (KTH Royal Institute of Technology)

  • Joachim Mayer

    (RWTH Aachen University)

  • Johan Nyman

    (Linköping University)

  • Carlos Errando-Herranz

    (KTH Royal Institute of Technology)

  • Göran Stemme

    (KTH Royal Institute of Technology)

  • Kristinn B. Gylfason

    (KTH Royal Institute of Technology)

  • Frank Niklaus

    (KTH Royal Institute of Technology)

Abstract

Silica glass is a high-performance material used in many applications such as lenses, glassware, and fibers. However, modern additive manufacturing of micro-scale silica glass structures requires sintering of 3D-printed silica-nanoparticle-loaded composites at ~1200 °C, which causes substantial structural shrinkage and limits the choice of substrate materials. Here, 3D printing of solid silica glass with sub-micrometer resolution is demonstrated without the need of a sintering step. This is achieved by locally crosslinking hydrogen silsesquioxane to silica glass using nonlinear absorption of sub-picosecond laser pulses. The as-printed glass is optically transparent but shows a high ratio of 4-membered silicon-oxygen rings and photoluminescence. Optional annealing at 900 °C makes the glass indistinguishable from fused silica. The utility of the approach is demonstrated by 3D printing an optical microtoroid resonator, a luminescence source, and a suspended plate on an optical-fiber tip. This approach enables promising applications in fields such as photonics, medicine, and quantum-optics.

Suggested Citation

  • Po-Han Huang & Miku Laakso & Pierre Edinger & Oliver Hartwig & Georg S. Duesberg & Lee-Lun Lai & Joachim Mayer & Johan Nyman & Carlos Errando-Herranz & Göran Stemme & Kristinn B. Gylfason & Frank Nikl, 2023. "Three-dimensional printing of silica glass with sub-micrometer resolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38996-3
    DOI: 10.1038/s41467-023-38996-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38996-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38996-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frederik Kotz & Patrick Risch & Karl Arnold & Semih Sevim & Josep Puigmartí-Luis & Alexander Quick & Michael Thiel & Andrei Hrynevich & Paul D. Dalton & Dorothea Helmer & Bastian E. Rapp, 2019. "Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Timo Gissibl & Simon Thiele & Alois Herkommer & Harald Giessen, 2016. "Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    3. Frederik Kotz & Karl Arnold & Werner Bauer & Dieter Schild & Nico Keller & Kai Sachsenheimer & Tobias M. Nargang & Christiane Richter & Dorothea Helmer & Bastian E. Rapp, 2017. "Three-dimensional printing of transparent fused silica glass," Nature, Nature, vol. 544(7650), pages 337-339, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziyong Li & Yanwen Jia & Ke Duan & Ran Xiao & Jingyu Qiao & Shuyu Liang & Shixiang Wang & Juzheng Chen & Hao Wu & Yang Lu & Xiewen Wen, 2024. "One-photon three-dimensional printed fused silica glass with sub-micron features," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyong Li & Yanwen Jia & Ke Duan & Ran Xiao & Jingyu Qiao & Shuyu Liang & Shixiang Wang & Juzheng Chen & Hao Wu & Yang Lu & Xiewen Wen, 2024. "One-photon three-dimensional printed fused silica glass with sub-micron features," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Chenhao Li & Torsten Wieduwilt & Fedja J. Wendisch & Andrés Márquez & Leonardo de S. Menezes & Stefan A. Maier & Markus A. Schmidt & Haoran Ren, 2023. "Metafiber transforming arbitrarily structured light," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Bo Dai & Liang Zhang & Chenglong Zhao & Hunter Bachman & Ryan Becker & John Mai & Ziao Jiao & Wei Li & Lulu Zheng & Xinjun Wan & Tony Jun Huang & Songlin Zhuang & Dawei Zhang, 2021. "Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Feng Jin & Jie Liu & Yuan-Yuan Zhao & Xian-Zi Dong & Mei-Ling Zheng & Xuan-Ming Duan, 2022. "λ/30 inorganic features achieved by multi-photon 3D lithography," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Mohsen Habibi & Shervin Foroughi & Vahid Karamzadeh & Muthukumaran Packirisamy, 2022. "Direct sound printing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Xabier Lopez de Pariza & Oihane Varela & Samantha O. Catt & Timothy E. Long & Eva Blasco & Haritz Sardon, 2023. "Recyclable photoresins for light-mediated additive manufacturing towards Loop 3D printing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Pang Zhu & Qingchuan Song & Sagar Bhagwat & Fadoua Mayoussi & Andreas Goralczyk & Niloofar Nekoonam & Mario Sanjaya & Peilong Hou & Silvio Tisato & Frederik Kotz-Helmer & Dorothea Helmer & Bastian E. , 2024. "Generation of precision microstructures based on reconfigurable photoresponsive hydrogels for high-resolution polymer replication and microoptics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38996-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.