IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46929-x.html
   My bibliography  Save this article

One-photon three-dimensional printed fused silica glass with sub-micron features

Author

Listed:
  • Ziyong Li

    (Kowloon
    Shenzhen Research Institute of City University of Hong Kong)

  • Yanwen Jia

    (Kowloon
    Shenzhen Research Institute of City University of Hong Kong
    Southern University of Science and Technology)

  • Ke Duan

    (Kowloon
    Shenzhen Research Institute of City University of Hong Kong
    National University of Defense Technology)

  • Ran Xiao

    (Kowloon
    Shenzhen Research Institute of City University of Hong Kong)

  • Jingyu Qiao

    (Kowloon
    Shenzhen Research Institute of City University of Hong Kong)

  • Shuyu Liang

    (Kowloon
    Shenzhen Research Institute of City University of Hong Kong)

  • Shixiang Wang

    (Kowloon
    Kowloon)

  • Juzheng Chen

    (Kowloon
    Shenzhen Research Institute of City University of Hong Kong)

  • Hao Wu

    (Kowloon
    Shenzhen Research Institute of City University of Hong Kong)

  • Yang Lu

    (Shenzhen Research Institute of City University of Hong Kong
    The University of Hong Kong)

  • Xiewen Wen

    (Kowloon
    Kowloon)

Abstract

The applications of silica-based glass have evolved alongside human civilization for thousands of years. High-precision manufacturing of three-dimensional (3D) fused silica glass objects is required in various industries, ranging from everyday life to cutting-edge fields. Advanced 3D printing technologies have emerged as a potent tool for fabricating arbitrary glass objects with ultimate freedom and precision. Stereolithography and femtosecond laser direct writing respectively achieved their resolutions of ~50 μm and ~100 nm. However, fabricating glass structures with centimeter dimensions and sub-micron features remains challenging. Presented here, our study effectively bridges the gap through engineering suitable materials and utilizing one-photon micro-stereolithography (OμSL)-based 3D printing, which flexibly creates transparent and high-performance fused silica glass components with complex, 3D sub-micron architectures. Comprehensive characterizations confirm that the final material is stoichiometrically pure silica with high quality, defect-free morphology, and excellent optical properties. Homogeneous volumetric shrinkage further facilitates the smallest voxel, reducing the size from 2.0 × 2.0 × 1.0 μm3 to 0.8 × 0.8 × 0.5 μm3. This approach can be used to produce fused silica glass components with various 3D geometries featuring sub-micron details and millimetric dimensions. This showcases promising prospects in diverse fields, including micro-optics, microfluidics, mechanical metamaterials, and engineered surfaces.

Suggested Citation

  • Ziyong Li & Yanwen Jia & Ke Duan & Ran Xiao & Jingyu Qiao & Shuyu Liang & Shixiang Wang & Juzheng Chen & Hao Wu & Yang Lu & Xiewen Wen, 2024. "One-photon three-dimensional printed fused silica glass with sub-micron features," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46929-x
    DOI: 10.1038/s41467-024-46929-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46929-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46929-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang Xu & Ye Li & Ning Zheng & Qian Zhao & Tao Xie, 2021. "Transparent origami glass," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    2. Frederik Kotz & Patrick Risch & Karl Arnold & Semih Sevim & Josep Puigmartí-Luis & Alexander Quick & Michael Thiel & Andrei Hrynevich & Paul D. Dalton & Dorothea Helmer & Bastian E. Rapp, 2019. "Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    3. Frederik Kotz & Karl Arnold & Werner Bauer & Dieter Schild & Nico Keller & Kai Sachsenheimer & Tobias M. Nargang & Christiane Richter & Dorothea Helmer & Bastian E. Rapp, 2017. "Three-dimensional printing of transparent fused silica glass," Nature, Nature, vol. 544(7650), pages 337-339, April.
    4. Po-Han Huang & Miku Laakso & Pierre Edinger & Oliver Hartwig & Georg S. Duesberg & Lee-Lun Lai & Joachim Mayer & Johan Nyman & Carlos Errando-Herranz & Göran Stemme & Kristinn B. Gylfason & Frank Nikl, 2023. "Three-dimensional printing of silica glass with sub-micrometer resolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Po-Han Huang & Miku Laakso & Pierre Edinger & Oliver Hartwig & Georg S. Duesberg & Lee-Lun Lai & Joachim Mayer & Johan Nyman & Carlos Errando-Herranz & Göran Stemme & Kristinn B. Gylfason & Frank Nikl, 2023. "Three-dimensional printing of silica glass with sub-micrometer resolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Wu, Yaobin & Huang, Jiazhou & Chen, Xiangfeng, 2024. "The information value of logistics platforms in a freight matching market," European Journal of Operational Research, Elsevier, vol. 312(1), pages 227-239.
    3. Feng Jin & Jie Liu & Yuan-Yuan Zhao & Xian-Zi Dong & Mei-Ling Zheng & Xuan-Ming Duan, 2022. "λ/30 inorganic features achieved by multi-photon 3D lithography," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Mohsen Habibi & Shervin Foroughi & Vahid Karamzadeh & Muthukumaran Packirisamy, 2022. "Direct sound printing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Xabier Lopez de Pariza & Oihane Varela & Samantha O. Catt & Timothy E. Long & Eva Blasco & Haritz Sardon, 2023. "Recyclable photoresins for light-mediated additive manufacturing towards Loop 3D printing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Pang Zhu & Qingchuan Song & Sagar Bhagwat & Fadoua Mayoussi & Andreas Goralczyk & Niloofar Nekoonam & Mario Sanjaya & Peilong Hou & Silvio Tisato & Frederik Kotz-Helmer & Dorothea Helmer & Bastian E. , 2024. "Generation of precision microstructures based on reconfigurable photoresponsive hydrogels for high-resolution polymer replication and microoptics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46929-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.