IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09846-y.html
   My bibliography  Save this article

Dramatic differences in carbon dioxide adsorption and initial steps of reduction between silver and copper

Author

Listed:
  • Yifan Ye

    (Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory
    Advanced Light Source, Lawrence Berkeley National Laboratory
    Chemical Sciences Division, Lawrence Berkeley National Laboratory)

  • Hao Yang

    (Materials and Process Simulation Center, California Institute of Technology)

  • Jin Qian

    (Materials and Process Simulation Center, California Institute of Technology)

  • Hongyang Su

    (Advanced Light Source, Lawrence Berkeley National Laboratory
    Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China)

  • Kyung-Jae Lee

    (Advanced Light Source, Lawrence Berkeley National Laboratory
    Gwangju Institute of Science and Technology (GIST))

  • Tao Cheng

    (Materials and Process Simulation Center, California Institute of Technology
    Joint Center for Artificial Photosynthesis, California Institute of Technology)

  • Hai Xiao

    (Materials and Process Simulation Center, California Institute of Technology
    Joint Center for Artificial Photosynthesis, California Institute of Technology)

  • Junko Yano

    (Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory
    Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory)

  • William A. Goddard

    (Materials and Process Simulation Center, California Institute of Technology
    Joint Center for Artificial Photosynthesis, California Institute of Technology)

  • Ethan J. Crumlin

    (Advanced Light Source, Lawrence Berkeley National Laboratory
    Chemical Sciences Division, Lawrence Berkeley National Laboratory)

Abstract

Converting carbon dioxide (CO2) into liquid fuels and synthesis gas is a world-wide priority. But there is no experimental information on the initial atomic level events for CO2 electroreduction on the metal catalysts to provide the basis for developing improved catalysts. Here we combine ambient pressure X-ray photoelectron spectroscopy with quantum mechanics to examine the processes as Ag is exposed to CO2 both alone and in the presence of H2O at 298 K. We find that CO2 reacts with surface O on Ag to form a chemisorbed species (O = CO2δ−). Adding H2O and CO2 then leads to up to four water attaching on O = CO2δ− and two water attaching on chemisorbed (b-)CO2. On Ag we find a much more favorable mechanism involving the O = CO2δ− compared to that involving b-CO2 on Cu. Each metal surface modifies the gas-catalyst interactions, providing a basis for tuning CO2 adsorption behavior to facilitate selective product formations.

Suggested Citation

  • Yifan Ye & Hao Yang & Jin Qian & Hongyang Su & Kyung-Jae Lee & Tao Cheng & Hai Xiao & Junko Yano & William A. Goddard & Ethan J. Crumlin, 2019. "Dramatic differences in carbon dioxide adsorption and initial steps of reduction between silver and copper," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09846-y
    DOI: 10.1038/s41467-019-09846-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09846-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09846-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jongyoun Kim & Taemin Lee & Hyun Dong Jung & Minkyoung Kim & Jungsu Eo & Byeongjae Kang & Hyeonwoo Jung & Jaehyoung Park & Daewon Bae & Yujin Lee & Sojung Park & Wooyul Kim & Seoin Back & Youngu Lee &, 2024. "Vitamin C-induced CO2 capture enables high-rate ethylene production in CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Wenxiang Zhu & Xiangcong Song & Fan Liao & Hui Huang & Qi Shao & Kun Feng & Yunjie Zhou & Mengjie Ma & Jie Wu & Hao Yang & Haiwei Yang & Meng Wang & Jie Shi & Jun Zhong & Tao Cheng & Mingwang Shao & Y, 2023. "Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Jeongjin Kim & Youngseok Yu & Tae Won Go & Jean-Jacques Gallet & Fabrice Bournel & Bongjin Simon Mun & Jeong Young Park, 2023. "Revealing CO2 dissociation pathways at vicinal copper (997) interfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Tuğçe Beyazay & Kendra S. Belthle & Christophe Farès & Martina Preiner & Joseph Moran & William F. Martin & Harun Tüysüz, 2023. "Ambient temperature CO2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09846-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.